Quantum Rangefinding
- URL: http://arxiv.org/abs/2006.04875v2
- Date: Wed, 25 Nov 2020 08:08:37 GMT
- Title: Quantum Rangefinding
- Authors: Stefan Frick, Alex McMillan and John Rarity
- Abstract summary: Quantum light generated in non-degenerate squeezers has many applications such as sub-shot-noise transmission measurements.
We show here that a maximally mixed state, normally viewed as nuisance, can indeed be used to extract information about the position of an object.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum light generated in non-degenerate squeezers has many applications
such as sub-shot-noise transmission measurements to maximise the information
extracted by one photon or quantum illumination to increase the probability in
target detection. However, any application thus far fails to consider the
thermal characteristics of one half of the bipartite down-converted photon
state often used in these experiments. We show here that a maximally mixed
state, normally viewed as nuisance, can indeed be used to extract information
about the position of an object while at the same time providing efficient
camouflaging against other thermal or background light.
Related papers
- Universal quantum frequency comb measurements by spectral mode-matching [39.58317527488534]
We present the first general approach to make arbitrary, one-shot measurements of a multimode quantum optical source.
This approach uses spectral mode-matching, which can be understood as interferometry with a memory effect.
arXiv Detail & Related papers (2024-05-28T15:17:21Z) - Classification of quantum states of light using random measurements
through a multimode fiber [42.5342379899288]
We present an optical scheme based on sending unknown input states through a multimode fiber.
A short multimode fiber implements effectively a random projection in the spatial domain.
A long-dispersive multimode fiber performs a spatial and spectral projection.
arXiv Detail & Related papers (2023-10-20T15:48:06Z) - On-chip quantum information processing with distinguishable photons [55.41644538483948]
Multi-photon interference is at the heart of photonic quantum technologies.
Here, we experimentally demonstrate that detection can be implemented with a temporal resolution sufficient to interfere photons detuned on the scales necessary for cavity-based integrated photon sources.
We show how time-resolved detection of non-ideal photons can be used to improve the fidelity of an entangling operation and to mitigate the reduction of computational complexity in boson sampling experiments.
arXiv Detail & Related papers (2022-10-14T18:16:49Z) - Quantum illumination with multiplexed photodetection [13.250854610190078]
We describe a theoretical but experimentally realizable quantum illumination scheme based on non-simultaneous and non-optimal measurements.
For lossy external conditions, the presence of the target object can be revealed earlier using multi-click measurements.
arXiv Detail & Related papers (2022-09-22T15:59:43Z) - Suppressing Amplitude Damping in Trapped Ions: Discrete Weak
Measurements for a Non-unitary Probabilistic Noise Filter [62.997667081978825]
We introduce a low-overhead protocol to reverse this degradation.
We present two trapped-ion schemes for the implementation of a non-unitary probabilistic filter against amplitude damping noise.
This filter can be understood as a protocol for single-copy quasi-distillation.
arXiv Detail & Related papers (2022-09-06T18:18:41Z) - Experimental Quantum Target Detection Approaching the Fundamental
Helstrom Limit [17.453697745298577]
We report an experimental demonstration of quantum target detection, also known as quantum illumination, in the single-photon limit.
Results indicate that quantum illumination breaks the classical limit for up to 40%, while approaching the quantum limit imposed by the Helstrom limit.
arXiv Detail & Related papers (2021-07-24T10:35:49Z) - Conditional preparation of non-Gaussian quantum optical states by
mesoscopic measurement [62.997667081978825]
Non-Gaussian states of an optical field are important as a proposed resource in quantum information applications.
We propose a novel approach involving displacement of the ancilla field into the regime where mesoscopic detectors can be used.
We conclude that states with strong Wigner negativity can be prepared at high rates by this technique under experimentally attainable conditions.
arXiv Detail & Related papers (2021-03-29T16:59:18Z) - Scheme for sub-shot-noise transmission measurement using a time
multiplexed single-photon source [0.0]
We simulate an experiment that uses a multiplexed single-photon source based on pair generation by continuous spontaneous parametric down conversion.
With such source, the sub-Poissonian statistics of the output signal is the key for achieving sub-shot-noise performance.
Results show that sub-shot-noise performance can be achieved, even without using number-resolving detectors.
arXiv Detail & Related papers (2020-07-31T04:26:53Z) - Two-photon phase-sensing with single-photon detection [0.0]
Path-entangled multi-photon states allow optical phase-sensing beyond the shot-noise limit.
We exploit advanced quantum state engineering based on superposing two photon-pair creation events.
We infer phase shifts by measuring the average intensity of the single-photon beam on a photodiode.
arXiv Detail & Related papers (2020-07-06T08:50:37Z) - Near-ideal spontaneous photon sources in silicon quantum photonics [55.41644538483948]
Integrated photonics is a robust platform for quantum information processing.
Sources of single photons that are highly indistinguishable and pure, that are either near-deterministic or heralded with high efficiency, have been elusive.
Here, we demonstrate on-chip photon sources that simultaneously meet each of these requirements.
arXiv Detail & Related papers (2020-05-19T16:46:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.