Scheme for sub-shot-noise transmission measurement using a time
multiplexed single-photon source
- URL: http://arxiv.org/abs/2007.15842v2
- Date: Thu, 3 Dec 2020 21:09:01 GMT
- Title: Scheme for sub-shot-noise transmission measurement using a time
multiplexed single-photon source
- Authors: Agustina G. Magnoni, Laura T. Knoll, Miguel A. Larotonda
- Abstract summary: We simulate an experiment that uses a multiplexed single-photon source based on pair generation by continuous spontaneous parametric down conversion.
With such source, the sub-Poissonian statistics of the output signal is the key for achieving sub-shot-noise performance.
Results show that sub-shot-noise performance can be achieved, even without using number-resolving detectors.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A promising result from optical quantum metrology is the ability to achieve
sub-shot-noise performance in transmission or absorption measurements. This is
due to the significantly lower uncertainty in light intensity of quantum beams
with respect to their classical counterparts. In this work, we simulate the
outcome of an experiment that uses a multiplexed single-photon source based on
pair generation by continuous spontaneous parametric down conversion (SPDC)
followed by a time multiplexing set-up with a binary temporal division
strategy, considering several types of experimental losses. With such source,
the sub-Poissonian statistics of the output signal is the key for achieving
sub-shot-noise performance. We compare the numerical results with two
paradigmatic limits: the shot-noise limit (achieved using coherent sources) and
the quantum limit (obtained with an ideal photon-number Fock state as the input
source). We also investigate conditions in which threshold detectors can be
used, and the effect of input light fluctuations on the measurement error.
Results show that sub-shot-noise performance can be achieved, even without
using number-resolving detectors, with improvement factors that range from 1.5
to 2. This technique would allow measurements of optical absorption of a sample
with reasonable uncertainty using ultra-low light intensity and minimum
disruption of biological or other fragile specimens.
Related papers
- Quantum advantage of time-reversed ancilla-based metrology of absorption
parameters [2.5499055723658097]
We consider the important problem of estimation of transmission of light by a sample, with losses due to absorption and scattering.
We show, through the determination of the quantum Fisher information, that the ancilla strategy leads to the best possible precision in single-mode estimation.
arXiv Detail & Related papers (2023-10-09T20:41:53Z) - Hyper-entanglement between pulse modes and frequency bins [101.18253437732933]
Hyper-entanglement between two or more photonic degrees of freedom (DOF) can enhance and enable new quantum protocols.
We demonstrate the generation of photon pairs hyper-entangled between pulse modes and frequency bins.
arXiv Detail & Related papers (2023-04-24T15:43:08Z) - Entanglement-enhanced dual-comb spectroscopy [0.7340017786387767]
Dual-comb interferometry harnesses the interference of two laser frequency combs to provide unprecedented capability in spectroscopy applications.
We propose an entanglement-enhanced dual-comb spectroscopy protocol that leverages quantum resources to significantly improve the signal-to-noise ratio performance.
Our results show significant quantum advantages in the uW to mW power range, making this technique particularly attractive for biological and chemical sensing applications.
arXiv Detail & Related papers (2023-04-04T03:57:53Z) - On-chip quantum information processing with distinguishable photons [55.41644538483948]
Multi-photon interference is at the heart of photonic quantum technologies.
Here, we experimentally demonstrate that detection can be implemented with a temporal resolution sufficient to interfere photons detuned on the scales necessary for cavity-based integrated photon sources.
We show how time-resolved detection of non-ideal photons can be used to improve the fidelity of an entangling operation and to mitigate the reduction of computational complexity in boson sampling experiments.
arXiv Detail & Related papers (2022-10-14T18:16:49Z) - Amplification of cascaded downconversion by reusing photons with a
switchable cavity [62.997667081978825]
We propose a scheme to amplify triplet production rates by using a fast switch and a delay loop.
Our proof-of-concept device increases the rate of detected photon triplets as predicted.
arXiv Detail & Related papers (2022-09-23T15:53:44Z) - Suppressing Amplitude Damping in Trapped Ions: Discrete Weak
Measurements for a Non-unitary Probabilistic Noise Filter [62.997667081978825]
We introduce a low-overhead protocol to reverse this degradation.
We present two trapped-ion schemes for the implementation of a non-unitary probabilistic filter against amplitude damping noise.
This filter can be understood as a protocol for single-copy quasi-distillation.
arXiv Detail & Related papers (2022-09-06T18:18:41Z) - Theoretical studies on quantum imaging with time-integrated
single-photon detection under realistic experimental conditions [0.0]
We study a quantum-enhanced differential measurement scheme that uses quantum probes and single-photon detectors.
We consider two typical non-classical states of light as a probe, a twin-Fock state and a two-mode squeezed vacuum state.
Their signal-to-noise ratios that quantifies the capability of detecting the defect are compared with a corresponding classical imaging scheme.
arXiv Detail & Related papers (2021-12-20T04:51:36Z) - Determination of weak squeezed vacuum state through photon statistics
measurement [4.064808764676522]
Weak squeezed vacuum light plays an important role in quantum storage and generation of various quantum sources.
General homodyne detection (HD) cannot determine weak squeezing due to the low signal to noise ratio and the limited resolution of the HD system.
This method can be used to measure other quantum features for various quantum states with extremely weak non-classicality.
arXiv Detail & Related papers (2021-12-07T12:55:11Z) - Conditional preparation of non-Gaussian quantum optical states by
mesoscopic measurement [62.997667081978825]
Non-Gaussian states of an optical field are important as a proposed resource in quantum information applications.
We propose a novel approach involving displacement of the ancilla field into the regime where mesoscopic detectors can be used.
We conclude that states with strong Wigner negativity can be prepared at high rates by this technique under experimentally attainable conditions.
arXiv Detail & Related papers (2021-03-29T16:59:18Z) - Assessment of weak-coupling approximations on a driven two-level system
under dissipation [58.720142291102135]
We study a driven qubit through the numerically exact and non-perturbative method known as the Liouville-von equation with dissipation.
We propose a metric that may be used in experiments to map the regime of validity of the Lindblad equation in predicting the steady state of the driven qubit.
arXiv Detail & Related papers (2020-11-11T22:45:57Z) - Boson sampling with random numbers of photons [0.0]
We show a novel boson sampling scheme where the probability of success increases instead of decreasing.
This is achieved by sampling at the same time in the number of occupied input ports and the number of input photons per port.
arXiv Detail & Related papers (2020-06-05T17:53:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.