論文の概要: Deep Stock Predictions
- arxiv url: http://arxiv.org/abs/2006.04992v1
- Date: Mon, 8 Jun 2020 23:37:47 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-24 01:34:46.014626
- Title: Deep Stock Predictions
- Title(参考訳): 深部株価予測
- Authors: Akash Doshi, Alexander Issa, Puneet Sachdeva, Sina Rafati, Somnath
Rakshit
- Abstract要約: 本稿では,Long Short Term Memory (LSTM) ニューラルネットワークを用いてポートフォリオ最適化を行うトレーディング戦略の設計について考察する。
次に、LSTMのトレーニングに使用する損失関数をカスタマイズし、利益を上げる。
カスタマイズされた損失関数を持つLSTMモデルは、ARIMAのような回帰ベースライン上でのトレーニングボットの性能を向上させる。
- 参考スコア(独自算出の注目度): 58.720142291102135
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Forecasting stock prices can be interpreted as a time series prediction
problem, for which Long Short Term Memory (LSTM) neural networks are often used
due to their architecture specifically built to solve such problems. In this
paper, we consider the design of a trading strategy that performs portfolio
optimization using the LSTM stock price prediction for four different
companies. We then customize the loss function used to train the LSTM to
increase the profit earned. Moreover, we propose a data driven approach for
optimal selection of window length and multi-step prediction length, and
consider the addition of analyst calls as technical indicators to a multi-stack
Bidirectional LSTM strengthened by the addition of Attention units. We find the
LSTM model with the customized loss function to have an improved performance in
the training bot over a regressive baseline such as ARIMA, while the addition
of analyst call does improve the performance for certain datasets.
- Abstract(参考訳): 株価の予測は時系列予測問題と解釈でき、Long Short Term Memory (LSTM) ニューラルネットワークはそのような問題を解決するために構築されたアーキテクチャのためにしばしば使用される。
本稿では,4つの企業に対するlstm株価予測を用いてポートフォリオ最適化を行うトレーディング戦略の設計について検討する。
次に、LSTMのトレーニングに使用する損失関数をカスタマイズし、利益を上げる。
さらに,ウィンドウ長とマルチステップ予測長の最適選択のためのデータ駆動手法を提案し,アテンションユニットの追加により強化されたマルチスタック双方向LSTMに対して,アナリスト呼び出しを技術的指標として考慮する。
ARIMAのような回帰ベースライン上でのトレーニングボットの性能を向上させるために,カスタマイズされた損失関数を持つLSTMモデルが提案されている。
関連論文リスト
- Scaling Laws for Predicting Downstream Performance in LLMs [75.28559015477137]
この研究は、性能評価のためのより効率的な指標として、事前学習損失に焦点を当てている。
我々は、データソース間のFLOPに基づいて、ドメイン固有の事前学習損失を予測するために、電力法解析関数を拡張した。
我々は2層ニューラルネットワークを用いて、複数のドメイン固有の損失と下流性能の非線形関係をモデル化する。
論文 参考訳(メタデータ) (2024-10-11T04:57:48Z) - F-FOMAML: GNN-Enhanced Meta-Learning for Peak Period Demand Forecasting with Proxy Data [65.6499834212641]
本稿では,需要予測をメタラーニング問題として定式化し,F-FOMAMLアルゴリズムを開発した。
タスク固有のメタデータを通してドメインの類似性を考慮することにより、トレーニングタスクの数が増加するにつれて過剰なリスクが減少する一般化を改善した。
従来の最先端モデルと比較して,本手法では需要予測精度が著しく向上し,内部自動販売機データセットでは平均絶対誤差が26.24%,JD.comデータセットでは1.04%削減された。
論文 参考訳(メタデータ) (2024-06-23T21:28:50Z) - Gated recurrent neural network with TPE Bayesian optimization for enhancing stock index prediction accuracy [0.0]
インドの著名な株式市場指標であるNIFTY50指数の翌日の終値の予測精度を改善することを目的とする。
8つの影響要因の組み合わせは、基本株価データ、技術指標、原油価格、マクロ経済データから慎重に選択される。
論文 参考訳(メタデータ) (2024-06-02T06:39:01Z) - Enhancing Financial Data Visualization for Investment Decision-Making [0.04096453902709291]
本稿では,ストックダイナミクスを予測するLong Short-Term Memory(LSTM)ネットワークの可能性について検討する。
この研究は、複雑なパターンをキャプチャするLSTMの能力を高めるために、複数の特徴を取り入れている。
LSTMには25日間のタイムステップで重要な価格とボリューム特性が組み込まれている。
論文 参考訳(メタデータ) (2023-12-09T07:53:25Z) - ResNLS: An Improved Model for Stock Price Forecasting [1.2039469573641217]
隣接する株価間の依存関係を強調することで、株価予測を改善するハイブリッドモデルを導入する。
SSE複合指数の予測において, 前回の5日連続取引日の閉値データを入力として用いた場合, モデルの性能(ResNLS-5)が最適であることを明らかにする。
また、現在の最先端のベースラインよりも少なくとも20%改善されている。
論文 参考訳(メタデータ) (2023-12-02T03:55:37Z) - Scaling Relationship on Learning Mathematical Reasoning with Large
Language Models [75.29595679428105]
本研究では,事前学習損失,教師付きデータ量,拡張データ量が教師付きLDMの推論性能に与える影響について検討する。
複数のモデルからの拒絶サンプルは、LLaMA-7BをGSM8Kの49.3%の精度に押し上げ、監督された微調整(SFT)の精度を35.9%上回る結果となった。
論文 参考訳(メタデータ) (2023-08-03T15:34:01Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
本稿では,ニューラルネットワークを一般化し,トランスフォーマーアーキテクチャを用いて獲得関数を学習する,エンド・ツー・エンドの差別化可能な最初のメタBOフレームワークを提案する。
我々は、この強化学習(RL)によるエンドツーエンドのフレームワークを、ラベル付き取得データの欠如に対処できるようにします。
論文 参考訳(メタデータ) (2023-05-25T10:58:46Z) - Stock Price Prediction Using Temporal Graph Model with Value Chain Data [3.1641827542160805]
本稿では,Long Short-Term Memory Graph Convolutional Neural Network (LSTM-GCN)モデルを提案する。
本実験により,LSTM-GCNモデルでは,価格データに完全に反映されていないバリューチェーンデータから付加的な情報を取得することができることが示された。
論文 参考訳(メタデータ) (2023-03-07T17:24:04Z) - Long Short-Term Memory Neural Network for Financial Time Series [0.0]
株価変動の予測のために,単体および並列長短期記憶ニューラルネットワークのアンサンブルを提案する。
ストレートなトレーディング戦略では、ランダムに選択されたポートフォリオと指数のすべての株を含むポートフォリオを比較すると、LSTMアンサンブルから得られたポートフォリオが平均的なリターンと時間とともに高い累積リターンを提供することを示している。
論文 参考訳(メタデータ) (2022-01-20T15:17:26Z) - Learning representations with end-to-end models for improved remaining
useful life prognostics [64.80885001058572]
残りの設備の実用寿命(RUL)は、現在の時刻と故障までの期間として定義される。
マルチ層パーセプトロンと長期メモリ層(LSTM)に基づくエンドツーエンドのディープラーニングモデルを提案し、RULを予測する。
提案するエンド・ツー・エンドのモデルがこのような優れた結果を達成し、他のディープラーニングや最先端の手法と比較する方法について論じる。
論文 参考訳(メタデータ) (2021-04-11T16:45:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。