論文の概要: A Deep Reinforcement Learning Approach to Automated Stock Trading, using xLSTM Networks
- arxiv url: http://arxiv.org/abs/2503.09655v1
- Date: Wed, 12 Mar 2025 10:56:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-14 15:50:46.088249
- Title: A Deep Reinforcement Learning Approach to Automated Stock Trading, using xLSTM Networks
- Title(参考訳): xLSTMネットワークを用いた株式自動取引の深層強化学習手法
- Authors: Faezeh Sarlakifar, Mohammadreza Mohammadzadeh Asl, Sajjad Rezvani Khaledi, Armin Salimi-Badr,
- Abstract要約: 本研究では,拡張長短期記憶(xLSTM)ネットワークと深部強化学習(DRL)アプローチを併用して,自動株式取引に利用することを検討した。
提案手法はアクターと批評家の両方でxLSTMネットワークを利用し,時系列データと動的市場環境の効果的処理を可能にする。
- 参考スコア(独自算出の注目度): 0.26249027950824505
- License:
- Abstract: Traditional Long Short-Term Memory (LSTM) networks are effective for handling sequential data but have limitations such as gradient vanishing and difficulty in capturing long-term dependencies, which can impact their performance in dynamic and risky environments like stock trading. To address these limitations, this study explores the usage of the newly introduced Extended Long Short Term Memory (xLSTM) network in combination with a deep reinforcement learning (DRL) approach for automated stock trading. Our proposed method utilizes xLSTM networks in both actor and critic components, enabling effective handling of time series data and dynamic market environments. Proximal Policy Optimization (PPO), with its ability to balance exploration and exploitation, is employed to optimize the trading strategy. Experiments were conducted using financial data from major tech companies over a comprehensive timeline, demonstrating that the xLSTM-based model outperforms LSTM-based methods in key trading evaluation metrics, including cumulative return, average profitability per trade, maximum earning rate, maximum pullback, and Sharpe ratio. These findings mark the potential of xLSTM for enhancing DRL-based stock trading systems.
- Abstract(参考訳): 従来のLong Short-Term Memory(LSTM)ネットワークは、シーケンシャルなデータを扱うのに有効であるが、グラデーションの消滅や長期的依存関係の取得の困難といった制限があり、株価取引のような動的で危険な環境でのパフォーマンスに影響を与える可能性がある。
これらの制約に対処するため,新たに導入された拡張長短メモリ(xLSTM)ネットワークと,自動株式取引のための深層強化学習(DRL)アプローチの併用について検討した。
提案手法はアクターと批評家の両方でxLSTMネットワークを利用し,時系列データと動的市場環境の効果的処理を可能にする。
PPO(Proximal Policy Optimization)は、探索と搾取のバランスをとる能力を持ち、取引戦略の最適化に使用される。
xLSTMベースのモデルは、累積リターン、貿易当たりの平均利益率、最大収益率、最大プルバック、シャープ比などの主要な取引評価指標において、LSTMベースの手法よりも優れていることを示した。
これらの結果は、DRLベースの株式取引システムを強化するためのxLSTMの可能性を示している。
関連論文リスト
- VinePPO: Unlocking RL Potential For LLM Reasoning Through Refined Credit Assignment [66.80143024475635]
VinePPOは不偏のモンテカルロ推定を計算するための簡単な手法である。
我々は、VinePPOが、MATHおよびGSM8Kデータセット間でPPOや他のRLフリーベースラインを一貫して上回ることを示す。
論文 参考訳(メタデータ) (2024-10-02T15:49:30Z) - FactorLLM: Factorizing Knowledge via Mixture of Experts for Large Language Models [50.331708897857574]
本稿では,高度に訓練された高密度FFNを余分なサブネットワークに分解する新しいアプローチであるFacterLLMを紹介する。
FactorLLMは、最大85%のモデル性能を確保しながら、推論速度を30%以上増加させながら、ソースモデルに匹敵するパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-08-15T16:45:16Z) - Commodities Trading through Deep Policy Gradient Methods [0.0]
商品取引問題を連続的な離散時間力学系として定式化する。
アクターベースとアクタークリティカルベースの2つのポリシーアルゴリズムが導入された。
先月末の天然ガス先物試験では、DRLモデルのシャープ比が買いと持ち株ベースラインと比較して83%高くなることが示されている。
論文 参考訳(メタデータ) (2023-08-10T17:21:12Z) - Stock Price Prediction Using Temporal Graph Model with Value Chain Data [3.1641827542160805]
本稿では,Long Short-Term Memory Graph Convolutional Neural Network (LSTM-GCN)モデルを提案する。
本実験により,LSTM-GCNモデルでは,価格データに完全に反映されていないバリューチェーンデータから付加的な情報を取得することができることが示された。
論文 参考訳(メタデータ) (2023-03-07T17:24:04Z) - A Novel Deep Reinforcement Learning Based Automated Stock Trading System
Using Cascaded LSTM Networks [3.593955557310285]
そこで我々は,まずLSTMを用いて日次データから時系列特徴を抽出し,抽出した特徴を訓練エージェントに供給する,DRLベースの株式取引システムを提案する。
米国の市場におけるDJIと中国の株式市場におけるSSE50の実験は、当社のモデルが累積リターンとシャープ比で従来のベースラインモデルを上回っていることを示している。
論文 参考訳(メタデータ) (2022-12-06T03:22:06Z) - Augmented Bilinear Network for Incremental Multi-Stock Time-Series
Classification [83.23129279407271]
本稿では,有価証券のセットで事前学習したニューラルネットワークで利用可能な知識を効率的に保持する手法を提案する。
本手法では,既存の接続を固定することにより,事前学習したニューラルネットワークに符号化された事前知識を維持する。
この知識は、新しいデータを用いて最適化された一連の拡張接続によって、新しい証券に対して調整される。
論文 参考訳(メタデータ) (2022-07-23T18:54:10Z) - Long Short-Term Memory Neural Network for Financial Time Series [0.0]
株価変動の予測のために,単体および並列長短期記憶ニューラルネットワークのアンサンブルを提案する。
ストレートなトレーディング戦略では、ランダムに選択されたポートフォリオと指数のすべての株を含むポートフォリオを比較すると、LSTMアンサンブルから得られたポートフォリオが平均的なリターンと時間とともに高い累積リターンを提供することを示している。
論文 参考訳(メタデータ) (2022-01-20T15:17:26Z) - Learning representations with end-to-end models for improved remaining
useful life prognostics [64.80885001058572]
残りの設備の実用寿命(RUL)は、現在の時刻と故障までの期間として定義される。
マルチ層パーセプトロンと長期メモリ層(LSTM)に基づくエンドツーエンドのディープラーニングモデルを提案し、RULを予測する。
提案するエンド・ツー・エンドのモデルがこのような優れた結果を達成し、他のディープラーニングや最先端の手法と比較する方法について論じる。
論文 参考訳(メタデータ) (2021-04-11T16:45:18Z) - Deep Stock Predictions [58.720142291102135]
本稿では,Long Short Term Memory (LSTM) ニューラルネットワークを用いてポートフォリオ最適化を行うトレーディング戦略の設計について考察する。
次に、LSTMのトレーニングに使用する損失関数をカスタマイズし、利益を上げる。
カスタマイズされた損失関数を持つLSTMモデルは、ARIMAのような回帰ベースライン上でのトレーニングボットの性能を向上させる。
論文 参考訳(メタデータ) (2020-06-08T23:37:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。