Hardware Implementation of Spiking Neural Networks Using
Time-To-First-Spike Encoding
- URL: http://arxiv.org/abs/2006.05033v2
- Date: Fri, 22 Oct 2021 05:56:20 GMT
- Title: Hardware Implementation of Spiking Neural Networks Using
Time-To-First-Spike Encoding
- Authors: Seongbin Oh, Dongseok Kwon, Gyuho Yeom, Won-Mook Kang, Soochang Lee,
Sung Yun Woo, Jang Saeng Kim, Min Kyu Park and Jong-Ho Lee
- Abstract summary: Hardware-based spiking neural networks (SNNs) are regarded as promising candidates for the cognitive computing system.
In this work, we train the SNN in which the firing time carries information using temporal backpropagation.
The temporally encoded SNN with 512 hidden neurons showed an accuracy of 96.90% for the MNIST test set.
- Score: 5.709318189772638
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Hardware-based spiking neural networks (SNNs) are regarded as promising
candidates for the cognitive computing system due to low power consumption and
highly parallel operation. In this work, we train the SNN in which the firing
time carries information using temporal backpropagation. The temporally encoded
SNN with 512 hidden neurons showed an accuracy of 96.90% for the MNIST test
set. Furthermore, the effect of the device variation on the accuracy in
temporally encoded SNN is investigated and compared with that of the
rate-encoded network. In a hardware configuration of our SNN, NOR-type analog
memory having an asymmetric floating gate is used as a synaptic device. In
addition, we propose a neuron circuit including a refractory period generator
for temporally encoded SNN. The performance of the 2-layer neural network
consisting of synapses and proposed neurons is evaluated through circuit
simulation using SPICE. The network with 128 hidden neurons showed an accuracy
of 94.9%, a 0.1% reduction compared to that of the system simulation of the
MNIST dataset. Finally, the latency and power consumption of each block
constituting the temporal network is analyzed and compared with those of the
rate-encoded network depending on the total time step. Assuming that the total
time step number of the network is 256, the temporal network consumes 15.12
times lower power than the rate-encoded network and can make decisions 5.68
times faster.
Related papers
- Scalable Mechanistic Neural Networks [52.28945097811129]
We propose an enhanced neural network framework designed for scientific machine learning applications involving long temporal sequences.
By reformulating the original Mechanistic Neural Network (MNN) we reduce the computational time and space complexities from cubic and quadratic with respect to the sequence length, respectively, to linear.
Extensive experiments demonstrate that S-MNN matches the original MNN in precision while substantially reducing computational resources.
arXiv Detail & Related papers (2024-10-08T14:27:28Z) - Accurate Mapping of RNNs on Neuromorphic Hardware with Adaptive Spiking Neurons [2.9410174624086025]
We present a $SigmaDelta$-low-pass RNN (lpRNN) for mapping rate-based RNNs to spiking neural networks (SNNs)
An adaptive spiking neuron model encodes signals using $SigmaDelta$-modulation and enables precise mapping.
We demonstrate the implementation of the lpRNN on Intel's neuromorphic research chip Loihi.
arXiv Detail & Related papers (2024-07-18T14:06:07Z) - Accelerating SNN Training with Stochastic Parallelizable Spiking Neurons [1.7056768055368383]
Spiking neural networks (SNN) are able to learn features while using less energy, especially on neuromorphic hardware.
Most widely used neuron in deep learning is the temporal and Fire (LIF) neuron.
arXiv Detail & Related papers (2023-06-22T04:25:27Z) - Input-Aware Dynamic Timestep Spiking Neural Networks for Efficient
In-Memory Computing [7.738130109655604]
Spiking Neural Networks (SNNs) have attracted widespread research interest because of their capability to process sparse and binary spike information.
We show that the energy cost and latency of SNNs scale linearly with the number of timesteps used on IMC hardware.
We propose input-aware Dynamic Timestep SNN (DT-SNN) to maximize the efficiency of SNNs.
arXiv Detail & Related papers (2023-05-27T03:01:27Z) - Timing-Based Backpropagation in Spiking Neural Networks Without
Single-Spike Restrictions [2.8360662552057323]
We propose a novel backpropagation algorithm for training spiking neural networks (SNNs)
It encodes information in the relative multiple spike timing of individual neurons without single-spike restrictions.
arXiv Detail & Related papers (2022-11-29T11:38:33Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
Spiking neural networks (SNNs) have achieved orders of magnitude improvement in terms of energy consumption and latency.
We present an IPU-optimized release of our custom SNN Python package, snnTorch.
arXiv Detail & Related papers (2022-11-19T15:44:08Z) - Braille Letter Reading: A Benchmark for Spatio-Temporal Pattern
Recognition on Neuromorphic Hardware [50.380319968947035]
Recent deep learning approaches have reached accuracy in such tasks, but their implementation on conventional embedded solutions is still computationally very and energy expensive.
We propose a new benchmark for computing tactile pattern recognition at the edge through letters reading.
We trained and compared feed-forward and recurrent spiking neural networks (SNNs) offline using back-propagation through time with surrogate gradients, then we deployed them on the Intel Loihimorphic chip for efficient inference.
Our results show that the LSTM outperforms the recurrent SNN in terms of accuracy by 14%. However, the recurrent SNN on Loihi is 237 times more energy
arXiv Detail & Related papers (2022-05-30T14:30:45Z) - Multi-Tones' Phase Coding (MTPC) of Interaural Time Difference by
Spiking Neural Network [68.43026108936029]
We propose a pure spiking neural network (SNN) based computational model for precise sound localization in the noisy real-world environment.
We implement this algorithm in a real-time robotic system with a microphone array.
The experiment results show a mean error azimuth of 13 degrees, which surpasses the accuracy of the other biologically plausible neuromorphic approach for sound source localization.
arXiv Detail & Related papers (2020-07-07T08:22:56Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z) - You Only Spike Once: Improving Energy-Efficient Neuromorphic Inference
to ANN-Level Accuracy [51.861168222799186]
Spiking Neural Networks (SNNs) are a type of neuromorphic, or brain-inspired network.
SNNs are sparse, accessing very few weights, and typically only use addition operations instead of the more power-intensive multiply-and-accumulate operations.
In this work, we aim to overcome the limitations of TTFS-encoded neuromorphic systems.
arXiv Detail & Related papers (2020-06-03T15:55:53Z) - Training of Quantized Deep Neural Networks using a Magnetic Tunnel
Junction-Based Synapse [23.08163992580639]
Quantized neural networks (QNNs) are being actively researched as a solution for the computational complexity and memory intensity of deep neural networks.
We show how magnetic tunnel junction (MTJ) devices can be used to support QNN training.
We introduce a novel synapse circuit that uses the MTJ behavior to support the quantize update.
arXiv Detail & Related papers (2019-12-29T11:36:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.