Towards an Intrinsic Definition of Robustness for a Classifier
- URL: http://arxiv.org/abs/2006.05095v2
- Date: Thu, 11 Jun 2020 12:40:07 GMT
- Title: Towards an Intrinsic Definition of Robustness for a Classifier
- Authors: Th\'eo Giraudon, Vincent Gripon, Matthias L\"owe, Franck Vermet
- Abstract summary: We show that averaging the radius of robustness of samples in a validation set is a statistically weak measure.
We propose instead to weight the importance of samples depending on their difficulty.
We empirically demonstrate the ability of the proposed score to measure robustness of classifiers with little dependence on the choice of samples.
- Score: 4.205692673448206
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The robustness of classifiers has become a question of paramount importance
in the past few years. Indeed, it has been shown that state-of-the-art deep
learning architectures can easily be fooled with imperceptible changes to their
inputs. Therefore, finding good measures of robustness of a trained classifier
is a key issue in the field. In this paper, we point out that averaging the
radius of robustness of samples in a validation set is a statistically weak
measure. We propose instead to weight the importance of samples depending on
their difficulty. We motivate the proposed score by a theoretical case study
using logistic regression, where we show that the proposed score is independent
of the choice of the samples it is evaluated upon. We also empirically
demonstrate the ability of the proposed score to measure robustness of
classifiers with little dependence on the choice of samples in more complex
settings, including deep convolutional neural networks and real datasets.
Related papers
- Investigating the Impact of Hard Samples on Accuracy Reveals In-class Data Imbalance [4.291589126905706]
In the AutoML domain, test accuracy is heralded as the quintessential metric for evaluating model efficacy.
However, the reliability of test accuracy as the primary performance metric has been called into question.
The distribution of hard samples between training and test sets affects the difficulty levels of those sets.
We propose a benchmarking procedure for comparing hard sample identification methods.
arXiv Detail & Related papers (2024-09-22T11:38:14Z) - Noisy Correspondence Learning with Self-Reinforcing Errors Mitigation [63.180725016463974]
Cross-modal retrieval relies on well-matched large-scale datasets that are laborious in practice.
We introduce a novel noisy correspondence learning framework, namely textbfSelf-textbfReinforcing textbfErrors textbfMitigation (SREM)
arXiv Detail & Related papers (2023-12-27T09:03:43Z) - Variational Classification [51.2541371924591]
We derive a variational objective to train the model, analogous to the evidence lower bound (ELBO) used to train variational auto-encoders.
Treating inputs to the softmax layer as samples of a latent variable, our abstracted perspective reveals a potential inconsistency.
We induce a chosen latent distribution, instead of the implicit assumption found in a standard softmax layer.
arXiv Detail & Related papers (2023-05-17T17:47:19Z) - Robust Outlier Rejection for 3D Registration with Variational Bayes [70.98659381852787]
We develop a novel variational non-local network-based outlier rejection framework for robust alignment.
We propose a voting-based inlier searching strategy to cluster the high-quality hypothetical inliers for transformation estimation.
arXiv Detail & Related papers (2023-04-04T03:48:56Z) - Boosting Differentiable Causal Discovery via Adaptive Sample Reweighting [62.23057729112182]
Differentiable score-based causal discovery methods learn a directed acyclic graph from observational data.
We propose a model-agnostic framework to boost causal discovery performance by dynamically learning the adaptive weights for the Reweighted Score function, ReScore.
arXiv Detail & Related papers (2023-03-06T14:49:59Z) - Identifying Adversarially Attackable and Robust Samples [1.4213973379473654]
Adrial attacks insert small, imperceptible perturbations to input samples that cause large, undesired changes to the output of deep learning models.
This work introduces the notion of sample attackability, where we aim to identify samples that are most susceptible to adversarial attacks.
We propose a deep-learning-based detector to identify the adversarially attackable and robust samples in an unseen dataset for an unseen target model.
arXiv Detail & Related papers (2023-01-30T13:58:14Z) - Holistic Approach to Measure Sample-level Adversarial Vulnerability and
its Utility in Building Trustworthy Systems [17.707594255626216]
Adversarial attack perturbs an image with an imperceptible noise, leading to incorrect model prediction.
We propose a holistic approach for quantifying adversarial vulnerability of a sample by combining different perspectives.
We demonstrate that by reliably estimating adversarial vulnerability at the sample level, it is possible to develop a trustworthy system.
arXiv Detail & Related papers (2022-05-05T12:36:17Z) - Energy-bounded Learning for Robust Models of Code [16.592638312365164]
In programming, learning code representations has a variety of applications, including code classification, code search, comment generation, bug prediction, and so on.
We propose the use of an energy-bounded learning objective function to assign a higher score to in-distribution samples and a lower score to out-of-distribution samples in order to incorporate such out-of-distribution samples into the training process of source code models.
arXiv Detail & Related papers (2021-12-20T06:28:56Z) - Exploiting Sample Uncertainty for Domain Adaptive Person
Re-Identification [137.9939571408506]
We estimate and exploit the credibility of the assigned pseudo-label of each sample to alleviate the influence of noisy labels.
Our uncertainty-guided optimization brings significant improvement and achieves the state-of-the-art performance on benchmark datasets.
arXiv Detail & Related papers (2020-12-16T04:09:04Z) - Closeness and Uncertainty Aware Adversarial Examples Detection in
Adversarial Machine Learning [0.7734726150561088]
We explore and assess the usage of 2 different groups of metrics in detecting adversarial samples.
We introduce a new feature for adversarial detection, and we show that the performances of all these metrics heavily depend on the strength of the attack being used.
arXiv Detail & Related papers (2020-12-11T14:44:59Z) - Learning a Unified Sample Weighting Network for Object Detection [113.98404690619982]
Region sampling or weighting is significantly important to the success of modern region-based object detectors.
We argue that sample weighting should be data-dependent and task-dependent.
We propose a unified sample weighting network to predict a sample's task weights.
arXiv Detail & Related papers (2020-06-11T16:19:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.