論文の概要: Contestable Black Boxes
- arxiv url: http://arxiv.org/abs/2006.05133v2
- Date: Tue, 30 Jun 2020 14:49:12 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-23 15:10:56.874909
- Title: Contestable Black Boxes
- Title(参考訳): コンペタブルブラックボックス
- Authors: Andrea Aler Tubella, Andreas Theodorou, Virginia Dignum, Loizos
Michael
- Abstract要約: 本稿では,アルゴリズムブラックボックスが関与する際の競合プロセスに必要な保証の種類について検討する。
本論では, 自動意思決定を評価するための補完的手法を考案した。
- 参考スコア(独自算出の注目度): 10.552465253379134
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The right to contest a decision with consequences on individuals or the
society is a well-established democratic right. Despite this right also being
explicitly included in GDPR in reference to automated decision-making, its
study seems to have received much less attention in the AI literature compared,
for example, to the right for explanation. This paper investigates the type of
assurances that are needed in the contesting process when algorithmic
black-boxes are involved, opening new questions about the interplay of
contestability and explainability. We argue that specialised complementary
methodologies to evaluate automated decision-making in the case of a particular
decision being contested need to be developed. Further, we propose a
combination of well-established software engineering and rule-based approaches
as a possible socio-technical solution to the issue of contestability, one of
the new democratic challenges posed by the automation of decision making.
- Abstract(参考訳): 個人や社会に影響を及ぼす決定を争う権利は、確立された民主的権利である。
この権利は、自動化された意思決定に関してgdprに明示的に含まれているにもかかわらず、その研究は、例えば説明の権利に対して、ai文献の注目度がはるかに低かったようである。
本稿では,アルゴリズムブラックボックスが関与する際の競合プロセスにおいて必要となる保証の種類について検討し,競合性や説明可能性に関する新たな疑問を提起する。
我々は、特定の意思決定が争われる場合に自動意思決定を評価するための専門的な補完的方法論を開発する必要があると主張している。
さらに,意思決定の自動化がもたらす新たな民主的課題のひとつとして,競争可能性問題に対する社会技術的解決策として,確立されたソフトウェア工学とルールベースのアプローチの組み合わせを提案する。
関連論文リスト
- ABI Approach: Automatic Bias Identification in Decision-Making Under Risk based in an Ontology of Behavioral Economics [46.57327530703435]
損失回避のようなバイアスによって引き起こされる損失に対する優先順位を求めるリスクは、課題を引き起こし、深刻なネガティブな結果をもたらす可能性がある。
本研究は,リスクサーチの選好を自動的に識別し,説明することにより,組織意思決定者を支援する新しいソリューションであるABIアプローチを紹介する。
論文 参考訳(メタデータ) (2024-05-22T23:53:46Z) - Bridging the gap: Towards an Expanded Toolkit for AI-driven Decision-Making in the Public Sector [6.693502127460251]
AIによる意思決定システムは、刑事司法、社会福祉、金融詐欺検出、公衆衛生などの分野に適用される。
これらのシステムは、機械学習(ML)モデルと公共セクターの意思決定の複雑な現実を整合させるという課題に直面している。
本稿では,データ側における分散シフトやラベルバイアス,過去の意思決定の影響,モデル出力側における競合する目標や人道支援など,不一致が発生する可能性のある5つの重要な課題について検討する。
論文 参考訳(メタデータ) (2023-10-29T17:44:48Z) - Human-Centric Multimodal Machine Learning: Recent Advances and Testbed
on AI-based Recruitment [66.91538273487379]
人間中心のアプローチでAIアプリケーションを開発する必要性には、ある程度のコンセンサスがある。
i)ユーティリティと社会的善、(ii)プライバシとデータ所有、(iii)透明性と説明責任、(iv)AIによる意思決定プロセスの公正性。
異種情報ソースに基づく現在のマルチモーダルアルゴリズムは、データ中の機密要素や内部バイアスによってどのように影響を受けるかを検討する。
論文 参考訳(メタデータ) (2023-02-13T16:44:44Z) - Causal Fairness Analysis [68.12191782657437]
意思決定設定における公平性の問題を理解し、モデル化し、潜在的に解決するためのフレームワークを導入します。
我々のアプローチの主な洞察は、観測データに存在する格差の定量化と、基礎となる、しばしば観測されていない、因果的なメカニズムの収集を結びつけることである。
本研究は,文献中の異なる基準間の関係を整理し,説明するための最初の体系的試みであるフェアネスマップにおいて,本研究の成果を左右するものである。
論文 参考訳(メタデータ) (2022-07-23T01:06:34Z) - The Conflict Between Explainable and Accountable Decision-Making
Algorithms [10.64167691614925]
意思決定アルゴリズムは、誰が医療プログラムに登録され、雇用されるべきかといった重要な決定に使われています。
XAIイニシアチブは、法的要件に準拠し、信頼を促進し、説明責任を維持するために、アルゴリズムを説明可能にすることを目的としている。
本稿では,自律型AIシステムによって引き起こされる責任問題の解決に,説明可能性がどの程度役立つのかを問う。
論文 参考訳(メタデータ) (2022-05-11T07:19:28Z) - Inverse Online Learning: Understanding Non-Stationary and Reactionary
Policies [79.60322329952453]
エージェントが意思決定を行う方法の解釈可能な表現を開発する方法を示す。
一連の軌跡に基づく意思決定プロセスを理解することにより,このオンライン学習問題に対して,政策推論問題を逆問題とみなした。
本稿では、エージェントがそれらを更新するプロセスと並行して、その影響を遡及的に推定する実用的なアルゴリズムを提案する。
UNOSの臓器提供受諾決定の分析に応用することで、我々のアプローチは意思決定プロセスを管理する要因や時間とともにどのように変化するかに、貴重な洞察をもたらすことができることを実証する。
論文 参考訳(メタデータ) (2022-03-14T17:40:42Z) - AI & Racial Equity: Understanding Sentiment Analysis Artificial
Intelligence, Data Security, and Systemic Theory in Criminal Justice Systems [0.0]
人種的体系的不正を悪化または減少させる人工知能の様々な形態が研究されている。
これは、歴史的体系的パターン、暗黙の偏見、既存のアルゴリズム的リスク、そして自然言語処理に基づくAI(リスク評価ツールなど)が人種的に異なる結果をもたらすという法的意味を通じて主張されている。
人種的に不正な結果や慣行から逸脱するためには、内部の機関や企業がアルゴリズム、プライバシーおよびセキュリティリスクをどのように活用するかを規制し、規制するために、より訴訟的な政策が必要であると結論付けている。
論文 参考訳(メタデータ) (2022-01-03T19:42:08Z) - Decision Rule Elicitation for Domain Adaptation [93.02675868486932]
ヒトインザループ機械学習は、専門家からラベルを引き出すために人工知能(AI)で広く使用されています。
この作業では、専門家が意思決定を説明する決定ルールを作成できるようにします。
決定規則の適用はアルゴリズムのドメイン適応を改善し、専門家の知識をAIモデルに広めるのに役立つことを示す。
論文 参考訳(メタデータ) (2021-02-23T08:07:22Z) - Conceptualising Contestability: Perspectives on Contesting Algorithmic
Decisions [18.155121103400333]
オーストラリアが提案するAI倫理枠組みに反応して提出を行った人々や組織の視点を記述し分析する。」
以上の結果から, 競争性の性質は議論されているものの, 個人を保護する方法と見なされ, 人間の意思決定と競合性に類似していることが判明した。
論文 参考訳(メタデータ) (2021-02-23T05:13:18Z) - "A cold, technical decision-maker": Can AI provide explainability,
negotiability, and humanity? [47.36687555570123]
参加者60名からなる5つのワークショップからなるアルゴリズム決定の質的研究の結果を報告する。
意思決定における参加者の人間性に関する考察を議論し,「交渉可能性」という概念を導入する。
論文 参考訳(メタデータ) (2020-12-01T22:36:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。