論文の概要: On the Need and Applicability of Causality for Fairness: A Unified Framework for AI Auditing and Legal Analysis
- arxiv url: http://arxiv.org/abs/2207.04053v4
- Date: Wed, 19 Mar 2025 13:15:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-20 17:45:40.584653
- Title: On the Need and Applicability of Causality for Fairness: A Unified Framework for AI Auditing and Legal Analysis
- Title(参考訳): 公正性のための因果性の必要性と適用性について:AI監査と法的分析のための統一フレームワーク
- Authors: Ruta Binkyte, Ljupcho Grozdanovski, Sami Zhioua,
- Abstract要約: アルゴリズム的差別に対処する上での因果推論の重要性について考察する。
ランドマークの事例と規制の枠組みをレビューすることで、原因的主張の証明に固有の課題を説明する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As Artificial Intelligence (AI) increasingly influences decisions in critical societal sectors, understanding and establishing causality becomes essential for evaluating the fairness of automated systems. This article explores the significance of causal reasoning in addressing algorithmic discrimination, emphasizing both legal and societal perspectives. By reviewing landmark cases and regulatory frameworks, particularly within the European Union, we illustrate the challenges inherent in proving causal claims when confronted with opaque AI decision-making processes. The discussion outlines practical obstacles and methodological limitations in applying causal inference to real-world fairness scenarios, proposing actionable solutions to enhance transparency, accountability, and fairness in algorithm-driven decisions.
- Abstract(参考訳): 人工知能(AI)が重要な社会分野の意思決定に影響を及ぼすにつれ、自動システムの公正性を評価する上で、因果関係の理解と確立が不可欠となる。
本稿では,アルゴリズム的差別に対処する上での因果推論の重要性を考察し,法的・社会的視点の両面を強調した。
目立ったケースや規制の枠組みをレビューすることで、特に欧州連合内では、不透明なAI意思決定プロセスに直面した場合、因果関係の主張を証明する上での課題を説明します。
この議論は、現実の公正性シナリオに因果推論を適用し、透明性、説明責任、公正性を高めるための実行可能なソリューションを提案するための実践的な障害と方法論的制限を概説している。
関連論文リスト
- Regulating Ai In Financial Services: Legal Frameworks And Compliance Challenges [0.0]
金融サービスにおける人工知能(AI)規制の進展状況について考察する。
不正検出からアルゴリズム取引まで、AI駆動のプロセスがいかに効率性を高め、重大なリスクをもたらすかを強調している。
この研究は、欧州連合、米国、英国などの主要な司法管轄区域における規制のアプローチを比較している。
論文 参考訳(メタデータ) (2025-03-17T14:29:09Z) - Causal Responsibility Attribution for Human-AI Collaboration [62.474732677086855]
本稿では,人間のAIシステムにおける責任を体系的に評価するために,構造因果モデル(SCM)を用いた因果的枠組みを提案する。
2つのケーススタディは、多様な人間とAIのコラボレーションシナリオにおけるフレームワークの適応性を示している。
論文 参考訳(メタデータ) (2024-11-05T17:17:45Z) - The Odyssey of Commonsense Causality: From Foundational Benchmarks to Cutting-Edge Reasoning [70.16523526957162]
常識の因果関係を理解することは、人々が現実世界の原理をよりよく理解するのに役立ちます。
その重要性にもかかわらず、このトピックの体系的な探索は特に欠落している。
本研究の目的は、体系的な概要の提供、最近の進歩に関する学者の更新、初心者のための実践的なガイドを提供することである。
論文 参考訳(メタデータ) (2024-06-27T16:30:50Z) - Fairness-Accuracy Trade-Offs: A Causal Perspective [58.06306331390586]
我々は、初めて因果レンズから公正性と正確性の間の張力を分析する。
因果的制約を強制することは、しばしば人口集団間の格差を減少させることを示す。
因果制約付きフェアラーニングのための新しいニューラルアプローチを導入する。
論文 参考訳(メタデータ) (2024-05-24T11:19:52Z) - ABI Approach: Automatic Bias Identification in Decision-Making Under Risk based in an Ontology of Behavioral Economics [46.57327530703435]
損失回避のようなバイアスによって引き起こされる損失に対する優先順位を求めるリスクは、課題を引き起こし、深刻なネガティブな結果をもたらす可能性がある。
本研究は,リスクサーチの選好を自動的に識別し,説明することにより,組織意思決定者を支援する新しいソリューションであるABIアプローチを紹介する。
論文 参考訳(メタデータ) (2024-05-22T23:53:46Z) - Implications of the AI Act for Non-Discrimination Law and Algorithmic Fairness [1.5029560229270191]
AIにおける公平性というトピックは、ここ数年で意味のある議論を巻き起こした。
法的な見地からは、多くのオープンな疑問が残る。
AI法は、これらの2つのアプローチをブリッジする大きな一歩を踏み出すかもしれない。
論文 参考訳(メタデータ) (2024-03-29T09:54:09Z) - Towards Responsible AI in Banking: Addressing Bias for Fair
Decision-Making [69.44075077934914]
責任AI(Responsible AI)は、企業文化の発展におけるバイアスに対処する重要な性質を強調している。
この論文は、バイアスを理解すること、バイアスを緩和すること、バイアスを説明することの3つの基本的な柱に基づいて構成されている。
オープンソースの原則に従って、アクセス可能なPythonパッケージとして、Bias On DemandとFairViewをリリースしました。
論文 参考訳(メタデータ) (2024-01-13T14:07:09Z) - Reconciling Predictive and Statistical Parity: A Causal Approach [68.59381759875734]
本稿では,予測パリティに付随する公平度対策のための因果分解式を提案する。
統計的および予測パリティの概念は、実際には互いに排他的ではなく、相補的であり、公正の概念のスペクトルにまたがっていることを示す。
論文 参考訳(メタデータ) (2023-06-08T09:23:22Z) - Causal Fairness Analysis [68.12191782657437]
意思決定設定における公平性の問題を理解し、モデル化し、潜在的に解決するためのフレームワークを導入します。
我々のアプローチの主な洞察は、観測データに存在する格差の定量化と、基礎となる、しばしば観測されていない、因果的なメカニズムの収集を結びつけることである。
本研究は,文献中の異なる基準間の関係を整理し,説明するための最初の体系的試みであるフェアネスマップにおいて,本研究の成果を左右するものである。
論文 参考訳(メタデータ) (2022-07-23T01:06:34Z) - Causal Discovery for Fairness [3.3861246056563616]
因果的発見アプローチの違いが因果的モデルにどのように影響するか,因果的モデル間の微妙な差異が公平さ/差別的結論にどのように影響するかを示す。
本研究の主な目的は,因果関係を用いて公平に対処する因果発見ステップの重要性を明らかにすることである。
論文 参考訳(メタデータ) (2022-06-14T08:40:40Z) - Fairness in Agreement With European Values: An Interdisciplinary
Perspective on AI Regulation [61.77881142275982]
この学際的立場の論文は、AIにおける公平性と差別に関する様々な懸念を考察し、AI規制がそれらにどう対処するかについて議論する。
私たちはまず、法律、(AI)産業、社会技術、そして(道徳)哲学のレンズを通して、AIと公正性に注目し、様々な視点を提示します。
我々は、AI公正性の懸念の観点から、AI法の取り組みを成功に導くために、AIレギュレーションが果たす役割を特定し、提案する。
論文 参考訳(メタデータ) (2022-06-08T12:32:08Z) - Promises and Challenges of Causality for Ethical Machine Learning [2.1946447418179664]
我々は「潜在的成果の枠組み」に基づく因果フェアネスの適切な適用条件を策定する。
我々は、因果的公平性文学においてしばしば無視される因果的推論の重要な側面を強調した。
このような介入の概念化は因果的仮定の妥当性を評価する上で重要であると我々は主張する。
論文 参考訳(メタデータ) (2022-01-26T00:04:10Z) - Conceptualising Contestability: Perspectives on Contesting Algorithmic
Decisions [18.155121103400333]
オーストラリアが提案するAI倫理枠組みに反応して提出を行った人々や組織の視点を記述し分析する。」
以上の結果から, 競争性の性質は議論されているものの, 個人を保護する方法と見なされ, 人間の意思決定と競合性に類似していることが判明した。
論文 参考訳(メタデータ) (2021-02-23T05:13:18Z) - Towards Causal Representation Learning [96.110881654479]
機械学習とグラフィカル因果関係の2つの分野が生まれ、別々に発展した。
現在、他分野の進歩の恩恵を受けるために、クロスポリン化と両方の分野への関心が高まっている。
論文 参考訳(メタデータ) (2021-02-22T15:26:57Z) - Survey on Causal-based Machine Learning Fairness Notions [4.157415305926584]
本稿では,因果関係に基づくフェアネス概念の包括的リストについて検討し,実世界のシナリオにおける適用性について検討する。
因果関係に基づく公平性の概念の大部分は、観測不可能な量という観点で定義されるため、実際にはそれらの量を計算するか、見積もる必要がある。
論文 参考訳(メタデータ) (2020-10-19T14:28:55Z) - Contestable Black Boxes [10.552465253379134]
本稿では,アルゴリズムブラックボックスが関与する際の競合プロセスに必要な保証の種類について検討する。
本論では, 自動意思決定を評価するための補完的手法を考案した。
論文 参考訳(メタデータ) (2020-06-09T09:09:00Z) - Principal Fairness for Human and Algorithmic Decision-Making [1.2691047660244335]
我々は、人間とアルゴリズムによる意思決定のために、主公正と呼ばれる新しい公正の概念を導入する。
既存の統計的公正の定義とは異なり、主公正性は個人が決定に影響を及ぼすことができるという事実をはっきりと説明している。
論文 参考訳(メタデータ) (2020-05-21T00:24:54Z) - On Consequentialism and Fairness [64.35872952140677]
機械学習におけるフェアネスの共通定義について、逐次的批判を行う。
学習とランダム化の問題に関するより広範な議論で締めくくります。
論文 参考訳(メタデータ) (2020-01-02T05:39:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。