Phase retrieval in high dimensions: Statistical and computational phase
transitions
- URL: http://arxiv.org/abs/2006.05228v2
- Date: Fri, 23 Oct 2020 15:27:51 GMT
- Title: Phase retrieval in high dimensions: Statistical and computational phase
transitions
- Authors: Antoine Maillard, Bruno Loureiro, Florent Krzakala, Lenka Zdeborov\'a
- Abstract summary: We consider the problem of reconstructing a $mathbfXstar$ from $m$ (possibly noisy) observations.
In particular, the information-theoretic transition to perfect recovery for full-rank matrices appears at $alpha=1$ and $alpha=2$.
Our work provides an extensive classification of the statistical and algorithmic thresholds in high-dimensional phase retrieval.
- Score: 27.437775143419987
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the phase retrieval problem of reconstructing a $n$-dimensional
real or complex signal $\mathbf{X}^{\star}$ from $m$ (possibly noisy)
observations $Y_\mu = | \sum_{i=1}^n \Phi_{\mu i} X^{\star}_i/\sqrt{n}|$, for a
large class of correlated real and complex random sensing matrices
$\mathbf{\Phi}$, in a high-dimensional setting where $m,n\to\infty$ while
$\alpha = m/n=\Theta(1)$. First, we derive sharp asymptotics for the lowest
possible estimation error achievable statistically and we unveil the existence
of sharp phase transitions for the weak- and full-recovery thresholds as a
function of the singular values of the matrix $\mathbf{\Phi}$. This is achieved
by providing a rigorous proof of a result first obtained by the replica method
from statistical mechanics. In particular, the information-theoretic transition
to perfect recovery for full-rank matrices appears at $\alpha=1$ (real case)
and $\alpha=2$ (complex case). Secondly, we analyze the performance of the
best-known polynomial time algorithm for this problem -- approximate
message-passing -- establishing the existence of a statistical-to-algorithmic
gap depending, again, on the spectral properties of $\mathbf{\Phi}$. Our work
provides an extensive classification of the statistical and algorithmic
thresholds in high-dimensional phase retrieval for a broad class of random
matrices.
Related papers
- Near-Optimal and Tractable Estimation under Shift-Invariance [0.21756081703275998]
Class of all such signals is but extremely rich: it contains all exponential oscillations over $mathbbCn$ with total degree $s$.
We show that the statistical complexity of this class, as measured by the radius squared minimax frequencies of the $(delta)$-confidence $ell$-ball, is nearly the same as for the class of $s$-sparse signals, namely $Oleft(slog(en) + log(delta-1)right) cdot log(en/s)
arXiv Detail & Related papers (2024-11-05T18:11:23Z) - Fine-grained Analysis and Faster Algorithms for Iteratively Solving Linear Systems [9.30306458153248]
We consider the spectral tail condition number, $kappa_ell$, defined as the ratio between the $ell$th largest and the smallest singular value of the matrix representing the system.
Some of the implications of our result, and of the use of $kappa_ell$, include direct improvement over a fine-grained analysis of the Conjugate method.
arXiv Detail & Related papers (2024-05-09T14:56:49Z) - Computational-Statistical Gaps in Gaussian Single-Index Models [77.1473134227844]
Single-Index Models are high-dimensional regression problems with planted structure.
We show that computationally efficient algorithms, both within the Statistical Query (SQ) and the Low-Degree Polynomial (LDP) framework, necessarily require $Omega(dkstar/2)$ samples.
arXiv Detail & Related papers (2024-03-08T18:50:19Z) - Provably learning a multi-head attention layer [55.2904547651831]
Multi-head attention layer is one of the key components of the transformer architecture that sets it apart from traditional feed-forward models.
In this work, we initiate the study of provably learning a multi-head attention layer from random examples.
We prove computational lower bounds showing that in the worst case, exponential dependence on $m$ is unavoidable.
arXiv Detail & Related papers (2024-02-06T15:39:09Z) - Fast Minimization of Expected Logarithmic Loss via Stochastic Dual
Averaging [8.990961435218544]
We propose a first-order algorithm named $B$-sample dual averaging with the logarithmic barrier.
For the Poisson inverse problem, our algorithm attains an $varepsilon$ solution in $smashtildeO(d3/varepsilon2)$ time.
When computing the maximum-likelihood estimate for quantum state tomography, our algorithm yields an $varepsilon$-optimal solution in $smashtildeO(d3/varepsilon2)$ time.
arXiv Detail & Related papers (2023-11-05T03:33:44Z) - Learning a Single Neuron with Adversarial Label Noise via Gradient
Descent [50.659479930171585]
We study a function of the form $mathbfxmapstosigma(mathbfwcdotmathbfx)$ for monotone activations.
The goal of the learner is to output a hypothesis vector $mathbfw$ that $F(mathbbw)=C, epsilon$ with high probability.
arXiv Detail & Related papers (2022-06-17T17:55:43Z) - Perturbation Analysis of Randomized SVD and its Applications to
High-dimensional Statistics [8.90202564665576]
We study the statistical properties of RSVD under a general "signal-plus-noise" framework.
We derive nearly-optimal performance guarantees for RSVD when applied to three statistical inference problems.
arXiv Detail & Related papers (2022-03-19T07:26:45Z) - Random matrices in service of ML footprint: ternary random features with
no performance loss [55.30329197651178]
We show that the eigenspectrum of $bf K$ is independent of the distribution of the i.i.d. entries of $bf w$.
We propose a novel random technique, called Ternary Random Feature (TRF)
The computation of the proposed random features requires no multiplication and a factor of $b$ less bits for storage compared to classical random features.
arXiv Detail & Related papers (2021-10-05T09:33:49Z) - Hutch++: Optimal Stochastic Trace Estimation [75.45968495410048]
We introduce a new randomized algorithm, Hutch++, which computes a $(1 pm epsilon)$ approximation to $tr(A)$ for any positive semidefinite (PSD) $A$.
We show that it significantly outperforms Hutchinson's method in experiments.
arXiv Detail & Related papers (2020-10-19T16:45:37Z) - A Random Matrix Analysis of Random Fourier Features: Beyond the Gaussian
Kernel, a Precise Phase Transition, and the Corresponding Double Descent [85.77233010209368]
This article characterizes the exacts of random Fourier feature (RFF) regression, in the realistic setting where the number of data samples $n$ is all large and comparable.
This analysis also provides accurate estimates of training and test regression errors for large $n,p,N$.
arXiv Detail & Related papers (2020-06-09T02:05:40Z) - Asymptotic errors for convex penalized linear regression beyond Gaussian
matrices [23.15629681360836]
We consider the problem of learning a coefficient vector $x_0$ in $RN$ from noisy linear observations.
We provide a rigorous derivation of an explicit formula for the mean squared error.
We show that our predictions agree remarkably well with numerics even for very moderate sizes.
arXiv Detail & Related papers (2020-02-11T13:43:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.