A Deep Learning-Based Method for Automatic Segmentation of Proximal
Femur from Quantitative Computed Tomography Images
- URL: http://arxiv.org/abs/2006.05513v3
- Date: Wed, 1 Jul 2020 13:04:52 GMT
- Title: A Deep Learning-Based Method for Automatic Segmentation of Proximal
Femur from Quantitative Computed Tomography Images
- Authors: Chen Zhao, Joyce H. Keyak, Jinshan Tang, Tadashi S. Kaneko, Sundeep
Khosla, Shreyasee Amin, Elizabeth J. Atkinson, Lan-Juan Zhao, Michael J.
Serou, Chaoyang Zhang, Hui Shen, Hong-Wen Deng, Weihua Zhou
- Abstract summary: We developed a 3D image segmentation method based V on-Net, an end-to-end fully convolutional neural network (CNN)
We performed experiments to evaluate the effectiveness of the proposed segmentation method.
- Score: 5.731199807877257
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Purpose: Proximal femur image analyses based on quantitative computed
tomography (QCT) provide a method to quantify the bone density and evaluate
osteoporosis and risk of fracture. We aim to develop a deep-learning-based
method for automatic proximal femur segmentation. Methods and Materials: We
developed a 3D image segmentation method based on V-Net, an end-to-end fully
convolutional neural network (CNN), to extract the proximal femur QCT images
automatically. The proposed V-net methodology adopts a compound loss function,
which includes a Dice loss and a L2 regularizer. We performed experiments to
evaluate the effectiveness of the proposed segmentation method. In the
experiments, a QCT dataset which included 397 QCT subjects was used. For the
QCT image of each subject, the ground truth for the proximal femur was
delineated by a well-trained scientist. During the experiments for the entire
cohort then for male and female subjects separately, 90% of the subjects were
used in 10-fold cross-validation for training and internal validation, and to
select the optimal parameters of the proposed models; the rest of the subjects
were used to evaluate the performance of models. Results: Visual comparison
demonstrated high agreement between the model prediction and ground truth
contours of the proximal femur portion of the QCT images. In the entire cohort,
the proposed model achieved a Dice score of 0.9815, a sensitivity of 0.9852 and
a specificity of 0.9992. In addition, an R2 score of 0.9956 (p<0.001) was
obtained when comparing the volumes measured by our model prediction with the
ground truth. Conclusion: This method shows a great promise for clinical
application to QCT and QCT-based finite element analysis of the proximal femur
for evaluating osteoporosis and hip fracture risk.
Related papers
- Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
Co-deletion of the 1p/19q gene is associated with clinical outcomes in low-grade gliomas.
This study aims to utilize a specially MRI-based convolutional neural network for brain cancer detection.
arXiv Detail & Related papers (2024-09-29T07:04:26Z) - TotalSegmentator MRI: Sequence-Independent Segmentation of 59 Anatomical Structures in MR images [62.53931644063323]
In this study we extended the capabilities of TotalSegmentator to MR images.
We trained an nnU-Net segmentation algorithm on this dataset and calculated similarity coefficients (Dice) to evaluate the model's performance.
The model significantly outperformed two other publicly available segmentation models (Dice score 0.824 versus 0.762; p0.001 and 0.762 versus 0.542; p)
arXiv Detail & Related papers (2024-05-29T20:15:54Z) - Fast and Robust Femur Segmentation from Computed Tomography Images for
Patient-Specific Hip Fracture Risk Screening [48.46841573872642]
We propose a deep neural network for fully automated, accurate, and fast segmentation of the proximal femur from CT.
Our method is apt for hip-fracture risk screening, bringing us one step closer to a clinically viable option for screening at-risk patients for hip-fracture susceptibility.
arXiv Detail & Related papers (2022-04-20T16:16:16Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
We propose a deep learning approach to enhance abnormal chest x-ray (CXR) identification performance through segmentations.
Our approach is designed in a cascaded manner and incorporates two modules: a deep neural network with criss-cross attention modules (XLSor) for localizing lung region in CXR images and a CXR classification model with a backbone of a self-supervised momentum contrast (MoCo) model pre-trained on large-scale CXR data sets.
arXiv Detail & Related papers (2022-02-22T15:24:06Z) - Systematic Clinical Evaluation of A Deep Learning Method for Medical
Image Segmentation: Radiosurgery Application [48.89674088331313]
We systematically evaluate a Deep Learning (DL) method in a 3D medical image segmentation task.
Our method is integrated into the radiosurgery treatment process and directly impacts the clinical workflow.
arXiv Detail & Related papers (2021-08-21T16:15:40Z) - Vision Transformers for femur fracture classification [59.99241204074268]
The Vision Transformer (ViT) was able to correctly predict 83% of the test images.
Good results were obtained in sub-fractures with the largest and richest dataset ever.
arXiv Detail & Related papers (2021-08-07T10:12:42Z) - A Deep Learning-based Method to Extract Lumen and Media-Adventitia in
Intravascular Ultrasound Images [3.2963079183841297]
Intravascular ultrasound (IVUS) imaging allows direct visualization of the coronary vessel wall.
Current segmentation relies on manual operations, which is time-consuming and user-dependent.
In this paper, we aim to develop a deep learning-based method using an encoder-decoder deep architecture.
arXiv Detail & Related papers (2021-02-21T00:10:05Z) - A Deep Learning-Based Approach to Extracting Periosteal and Endosteal
Contours of Proximal Femur in Quantitative CT Images [25.76523855274612]
A three-dimensional (3D) end-to-end fully convolutional neural network was developed for our segmentation task.
Two models with the same network structures were trained and they achieved a dice similarity coefficient (DSC) of 97.87% and 96.49% for the periosteal and endosteal contours, respectively.
It demonstrated a strong potential for clinical use, including the hip fracture risk prediction and finite element analysis.
arXiv Detail & Related papers (2021-02-03T10:23:41Z) - Automated femur segmentation from computed tomography images using a
deep neural network [0.0]
Osteoporosis is a common bone disease that occurs when the creation of new bone does not keep up with the loss of old bone, resulting in increased fracture risk.
We present a novel approach for segmenting the proximal femur that uses a deep convolutional neural network to produce accurate, automated, robust, and fast segmentations of the femur from CT scans.
arXiv Detail & Related papers (2021-01-27T23:37:56Z) - An Analysis by Synthesis Method that Allows Accurate Spatial Modeling of
Thickness of Cortical Bone from Clinical QCT [0.7340017786387765]
Osteoporosis is a skeletal disorder that leads to increased fracture risk due to decreased strength of cortical and trabecular bone.
We propose a novel, model based, fully automatic image analysis method that allows accurate spatial modeling of the thickness distribution of cortical bone.
arXiv Detail & Related papers (2020-09-18T07:30:18Z) - SCREENet: A Multi-view Deep Convolutional Neural Network for
Classification of High-resolution Synthetic Mammographic Screening Scans [3.8137985834223502]
We develop and evaluate a multi-view deep learning approach to the analysis of high-resolution synthetic mammograms.
We assess the effect on accuracy of image resolution and training set size.
arXiv Detail & Related papers (2020-09-18T00:12:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.