A Deep Learning-Based Approach to Extracting Periosteal and Endosteal
Contours of Proximal Femur in Quantitative CT Images
- URL: http://arxiv.org/abs/2102.01990v1
- Date: Wed, 3 Feb 2021 10:23:41 GMT
- Title: A Deep Learning-Based Approach to Extracting Periosteal and Endosteal
Contours of Proximal Femur in Quantitative CT Images
- Authors: Yu Deng, Ling Wang, Chen Zhao, Shaojie Tang, Xiaoguang Cheng, Hong-Wen
Deng, Weihua Zhou
- Abstract summary: A three-dimensional (3D) end-to-end fully convolutional neural network was developed for our segmentation task.
Two models with the same network structures were trained and they achieved a dice similarity coefficient (DSC) of 97.87% and 96.49% for the periosteal and endosteal contours, respectively.
It demonstrated a strong potential for clinical use, including the hip fracture risk prediction and finite element analysis.
- Score: 25.76523855274612
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automatic CT segmentation of proximal femur is crucial for the diagnosis and
risk stratification of orthopedic diseases; however, current methods for the
femur CT segmentation mainly rely on manual interactive segmentation, which is
time-consuming and has limitations in both accuracy and reproducibility. In
this study, we proposed an approach based on deep learning for the automatic
extraction of the periosteal and endosteal contours of proximal femur in order
to differentiate cortical and trabecular bone compartments. A three-dimensional
(3D) end-to-end fully convolutional neural network, which can better combine
the information between neighbor slices and get more accurate segmentation
results, was developed for our segmentation task. 100 subjects aged from 50 to
87 years with 24,399 slices of proximal femur CT images were enrolled in this
study. The separation of cortical and trabecular bone derived from the QCT
software MIAF-Femur was used as the segmentation reference. We randomly divided
the whole dataset into a training set with 85 subjects for 10-fold
cross-validation and a test set with 15 subjects for evaluating the performance
of models. Two models with the same network structures were trained and they
achieved a dice similarity coefficient (DSC) of 97.87% and 96.49% for the
periosteal and endosteal contours, respectively. To verify the excellent
performance of our model for femoral segmentation, we measured the volume of
different parts of the femur and compared it with the ground truth and the
relative errors between predicted result and ground truth are all less than 5%.
It demonstrated a strong potential for clinical use, including the hip fracture
risk prediction and finite element analysis.
Related papers
- Fusion of Diffusion Weighted MRI and Clinical Data for Predicting
Functional Outcome after Acute Ischemic Stroke with Deep Contrastive Learning [1.4149937986822438]
Stroke is a common disabling neurological condition that affects about one-quarter of the adult population over age 25.
Our proposed fusion model achieves 0.87, 0.80 and 80.45% for AUC, F1-score and accuracy, respectively.
arXiv Detail & Related papers (2024-02-16T18:51:42Z) - Random Expert Sampling for Deep Learning Segmentation of Acute Ischemic
Stroke on Non-contrast CT [2.0296858917615856]
The data set consisted of 260 Non-Contrast CTs from 233 patients of acute ischemic stroke patients recruited in the DEFUSE 3 trial.
A benchmark U-Net was trained on the reference annotations of three experienced neuroradiologists to segment ischemic brain tissue using majority vote and random expert sampling training schemes.
A model trained on random expert sampling can identify the presence and location of acute ischemic brain tissue on Non-Contrast CT similar to CT perfusion and with better consistency than experts.
arXiv Detail & Related papers (2023-09-07T16:59:38Z) - Accurate Fine-Grained Segmentation of Human Anatomy in Radiographs via
Volumetric Pseudo-Labeling [66.75096111651062]
We created a large-scale dataset of 10,021 thoracic CTs with 157 labels.
We applied an ensemble of 3D anatomy segmentation models to extract anatomical pseudo-labels.
Our resulting segmentation models demonstrated remarkable performance on CXR.
arXiv Detail & Related papers (2023-06-06T18:01:08Z) - TotalSegmentator: robust segmentation of 104 anatomical structures in CT
images [48.50994220135258]
We present a deep learning segmentation model for body CT images.
The model can segment 104 anatomical structures relevant for use cases such as organ volumetry, disease characterization, and surgical or radiotherapy planning.
arXiv Detail & Related papers (2022-08-11T15:16:40Z) - Fast and Robust Femur Segmentation from Computed Tomography Images for
Patient-Specific Hip Fracture Risk Screening [48.46841573872642]
We propose a deep neural network for fully automated, accurate, and fast segmentation of the proximal femur from CT.
Our method is apt for hip-fracture risk screening, bringing us one step closer to a clinically viable option for screening at-risk patients for hip-fracture susceptibility.
arXiv Detail & Related papers (2022-04-20T16:16:16Z) - Systematic Clinical Evaluation of A Deep Learning Method for Medical
Image Segmentation: Radiosurgery Application [48.89674088331313]
We systematically evaluate a Deep Learning (DL) method in a 3D medical image segmentation task.
Our method is integrated into the radiosurgery treatment process and directly impacts the clinical workflow.
arXiv Detail & Related papers (2021-08-21T16:15:40Z) - Automated femur segmentation from computed tomography images using a
deep neural network [0.0]
Osteoporosis is a common bone disease that occurs when the creation of new bone does not keep up with the loss of old bone, resulting in increased fracture risk.
We present a novel approach for segmenting the proximal femur that uses a deep convolutional neural network to produce accurate, automated, robust, and fast segmentations of the femur from CT scans.
arXiv Detail & Related papers (2021-01-27T23:37:56Z) - M3Lung-Sys: A Deep Learning System for Multi-Class Lung Pneumonia
Screening from CT Imaging [85.00066186644466]
We propose a Multi-task Multi-slice Deep Learning System (M3Lung-Sys) for multi-class lung pneumonia screening from CT imaging.
In addition to distinguish COVID-19 from Healthy, H1N1, and CAP cases, our M 3 Lung-Sys also be able to locate the areas of relevant lesions.
arXiv Detail & Related papers (2020-10-07T06:22:24Z) - A Deep Learning-Based Method for Automatic Segmentation of Proximal
Femur from Quantitative Computed Tomography Images [5.731199807877257]
We developed a 3D image segmentation method based V on-Net, an end-to-end fully convolutional neural network (CNN)
We performed experiments to evaluate the effectiveness of the proposed segmentation method.
arXiv Detail & Related papers (2020-06-09T21:16:47Z) - Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on
2.5 D Residual Squeeze and Excitation Deep Learning Model [55.09533240649176]
The aim of this work is to develop an accurate automatic segmentation method based on deep learning models for the myocardial borders on LGE-MRI.
A total number of 320 exams (with a mean number of 6 slices per exam) were used for training and 28 exams used for testing.
The performance analysis of the proposed ensemble model in the basal and middle slices was similar as compared to intra-observer study and slightly lower at apical slices.
arXiv Detail & Related papers (2020-05-27T20:44:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.