A survey on deep hashing for image retrieval
- URL: http://arxiv.org/abs/2006.05627v1
- Date: Wed, 10 Jun 2020 03:01:59 GMT
- Title: A survey on deep hashing for image retrieval
- Authors: Xiaopeng Zhang
- Abstract summary: I propose a Shadow Recurrent Hashing(SRH) method as a try to break through the bottleneck of existing hashing methods.
Specifically, I devise a CNN architecture to extract the semantic features of images and design a loss function to encourage similar images projected close.
Several experiments on dataset CIFAR-10 show the satisfying performance of SRH.
- Score: 7.156209824590489
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Hashing has been widely used in approximate nearest search for large-scale
database retrieval for its computation and storage efficiency. Deep hashing,
which devises convolutional neural network architecture to exploit and extract
the semantic information or feature of images, has received increasing
attention recently. In this survey, several deep supervised hashing methods for
image retrieval are evaluated and I conclude three main different directions
for deep supervised hashing methods. Several comments are made at the end.
Moreover, to break through the bottleneck of the existing hashing methods, I
propose a Shadow Recurrent Hashing(SRH) method as a try. Specifically, I devise
a CNN architecture to extract the semantic features of images and design a loss
function to encourage similar images projected close. To this end, I propose a
concept: shadow of the CNN output. During optimization process, the CNN output
and its shadow are guiding each other so as to achieve the optimal solution as
much as possible. Several experiments on dataset CIFAR-10 show the satisfying
performance of SRH.
Related papers
- HybridHash: Hybrid Convolutional and Self-Attention Deep Hashing for Image Retrieval [0.3880517371454968]
We propose a hybrid convolutional and self-attention deep hashing method known as HybridHash.
We have conducted comprehensive experiments on three widely used datasets: CIFAR-10, NUS-WIDE and IMAGENET.
The experimental results demonstrate that the method proposed in this paper has superior performance with respect to state-of-the-art deep hashing methods.
arXiv Detail & Related papers (2024-05-13T07:45:20Z) - Asymmetric Hash Code Learning for Remote Sensing Image Retrieval [22.91678927865952]
We propose a novel deep hashing method, named asymmetric hash code learning (AHCL), for remote sensing image retrieval.
The AHCL generates the hash codes of query and database images in an asymmetric way.
The experimental results on three public datasets demonstrate that the proposed method outperforms symmetric methods in terms of retrieval accuracy and efficiency.
arXiv Detail & Related papers (2022-01-15T07:00:38Z) - PHPQ: Pyramid Hybrid Pooling Quantization for Efficient Fine-Grained
Image Retrieval [68.05570413133462]
We propose a Pyramid Hybrid Pooling Quantization (PHPQ) module to capture and preserve fine-grained semantic information from multi-level features.
Experiments on two widely-used public benchmarks, CUB-200-2011 and Stanford Dogs, demonstrate that PHPQ outperforms state-of-the-art methods.
arXiv Detail & Related papers (2021-09-11T07:21:02Z) - Deep Triplet Hashing Network for Case-based Medical Image Retrieval [33.21919320742157]
We propose an end-to-end framework, called Attention-based Triplet Hashing (ATH) network, to learn low-dimensional hash codes.
We show that our proposed ATH can further improve the retrieval performance compared to the state-of-the-art deep hashing methods.
arXiv Detail & Related papers (2021-01-29T01:35:46Z) - Deep Momentum Uncertainty Hashing [65.27971340060687]
We propose a novel Deep Momentum Uncertainty Hashing (DMUH)
It explicitly estimates the uncertainty during training and leverages the uncertainty information to guide the approximation process.
Our method achieves the best performance on all of the datasets and surpasses existing state-of-the-art methods by a large margin.
arXiv Detail & Related papers (2020-09-17T01:57:45Z) - Deep Reinforcement Learning with Label Embedding Reward for Supervised
Image Hashing [85.84690941656528]
We introduce a novel decision-making approach for deep supervised hashing.
We learn a deep Q-network with a novel label embedding reward defined by Bose-Chaudhuri-Hocquenghem codes.
Our approach outperforms state-of-the-art supervised hashing methods under various code lengths.
arXiv Detail & Related papers (2020-08-10T09:17:20Z) - Dual-level Semantic Transfer Deep Hashing for Efficient Social Image
Retrieval [35.78137004253608]
Social network stores and disseminates a tremendous amount of user shared images.
Deep hashing is an efficient indexing technique to support large-scale social image retrieval.
Existing methods suffer from severe semantic shortage when optimizing a large amount of deep neural network parameters.
We propose a Dual-level Semantic Transfer Deep Hashing (DSTDH) method to alleviate this problem.
arXiv Detail & Related papers (2020-06-10T01:03:09Z) - Reinforcing Short-Length Hashing [61.75883795807109]
Existing methods have poor performance in retrieval using an extremely short-length hash code.
In this study, we propose a novel reinforcing short-length hashing (RSLH)
In this proposed RSLH, mutual reconstruction between the hash representation and semantic labels is performed to preserve the semantic information.
Experiments on three large-scale image benchmarks demonstrate the superior performance of RSLH under various short-length hashing scenarios.
arXiv Detail & Related papers (2020-04-24T02:23:52Z) - A Survey on Deep Hashing Methods [52.326472103233854]
Nearest neighbor search aims to obtain the samples in the database with the smallest distances from them to the queries.
With the development of deep learning, deep hashing methods show more advantages than traditional methods.
Deep supervised hashing is categorized into pairwise methods, ranking-based methods, pointwise methods and quantization.
Deep unsupervised hashing is categorized into similarity reconstruction-based methods, pseudo-label-based methods and prediction-free self-supervised learning-based methods.
arXiv Detail & Related papers (2020-03-04T08:25:15Z) - Learning to Hash with Graph Neural Networks for Recommender Systems [103.82479899868191]
Graph representation learning has attracted much attention in supporting high quality candidate search at scale.
Despite its effectiveness in learning embedding vectors for objects in the user-item interaction network, the computational costs to infer users' preferences in continuous embedding space are tremendous.
We propose a simple yet effective discrete representation learning framework to jointly learn continuous and discrete codes.
arXiv Detail & Related papers (2020-03-04T06:59:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.