3D Human Mesh Regression with Dense Correspondence
- URL: http://arxiv.org/abs/2006.05734v2
- Date: Sun, 6 Jun 2021 13:00:47 GMT
- Title: 3D Human Mesh Regression with Dense Correspondence
- Authors: Wang Zeng, Wanli Ouyang, Ping Luo, Wentao Liu, Xiaogang Wang
- Abstract summary: Estimating 3D mesh of the human body from a single 2D image is an important task with many applications such as augmented reality and Human-Robot interaction.
Prior works reconstructed 3D mesh from global image feature extracted by using convolutional neural network (CNN), where the dense correspondences between the mesh surface and the image pixels are missing.
This paper proposes a model-free 3D human mesh estimation framework, named DecoMR, which explicitly establishes the dense correspondence between the mesh and the local image features in the UV space.
- Score: 95.92326689172877
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Estimating 3D mesh of the human body from a single 2D image is an important
task with many applications such as augmented reality and Human-Robot
interaction. However, prior works reconstructed 3D mesh from global image
feature extracted by using convolutional neural network (CNN), where the dense
correspondences between the mesh surface and the image pixels are missing,
leading to suboptimal solution. This paper proposes a model-free 3D human mesh
estimation framework, named DecoMR, which explicitly establishes the dense
correspondence between the mesh and the local image features in the UV space
(i.e. a 2D space used for texture mapping of 3D mesh). DecoMR first predicts
pixel-to-surface dense correspondence map (i.e., IUV image), with which we
transfer local features from the image space to the UV space. Then the
transferred local image features are processed in the UV space to regress a
location map, which is well aligned with transferred features. Finally we
reconstruct 3D human mesh from the regressed location map with a predefined
mapping function. We also observe that the existing discontinuous UV map are
unfriendly to the learning of network. Therefore, we propose a novel UV map
that maintains most of the neighboring relations on the original mesh surface.
Experiments demonstrate that our proposed local feature alignment and
continuous UV map outperforms existing 3D mesh based methods on multiple public
benchmarks. Code will be made available at
https://github.com/zengwang430521/DecoMR
Related papers
- Weakly-Supervised 3D Reconstruction of Clothed Humans via Normal Maps [1.6462601662291156]
We present a novel deep learning-based approach to the 3D reconstruction of clothed humans using weak supervision via 2D normal maps.
Given a single RGB image or multiview images, our network infers a signed distance function (SDF) discretized on a tetrahedral mesh surrounding the body in a rest pose.
We demonstrate the efficacy of our approach for both network inference and 3D reconstruction.
arXiv Detail & Related papers (2023-11-27T18:06:35Z) - SeMLaPS: Real-time Semantic Mapping with Latent Prior Networks and
Quasi-Planar Segmentation [53.83313235792596]
We present a new methodology for real-time semantic mapping from RGB-D sequences.
It combines a 2D neural network and a 3D network based on a SLAM system with 3D occupancy mapping.
Our system achieves state-of-the-art semantic mapping quality within 2D-3D networks-based systems.
arXiv Detail & Related papers (2023-06-28T22:36:44Z) - Sampling is Matter: Point-guided 3D Human Mesh Reconstruction [0.0]
This paper presents a simple yet powerful method for 3D human mesh reconstruction from a single RGB image.
Experimental results on benchmark datasets show that the proposed method efficiently improves the performance of 3D human mesh reconstruction.
arXiv Detail & Related papers (2023-04-19T08:45:26Z) - Monocular 3D Object Reconstruction with GAN Inversion [122.96094885939146]
MeshInversion is a novel framework to improve the reconstruction of textured 3D meshes.
It exploits the generative prior of a 3D GAN pre-trained for 3D textured mesh synthesis.
Our framework obtains faithful 3D reconstructions with consistent geometry and texture across both observed and unobserved parts.
arXiv Detail & Related papers (2022-07-20T17:47:22Z) - Neural 3D Scene Reconstruction with the Manhattan-world Assumption [58.90559966227361]
This paper addresses the challenge of reconstructing 3D indoor scenes from multi-view images.
Planar constraints can be conveniently integrated into the recent implicit neural representation-based reconstruction methods.
The proposed method outperforms previous methods by a large margin on 3D reconstruction quality.
arXiv Detail & Related papers (2022-05-05T17:59:55Z) - AUV-Net: Learning Aligned UV Maps for Texture Transfer and Synthesis [78.17671694498185]
We propose AUV-Net which learns to embed 3D surfaces into a 2D aligned UV space.
As a result, textures are aligned across objects, and can thus be easily synthesized by generative models of images.
The learned UV mapping and aligned texture representations enable a variety of applications including texture transfer, texture synthesis, and textured single view 3D reconstruction.
arXiv Detail & Related papers (2022-04-06T21:39:24Z) - Deep Hybrid Self-Prior for Full 3D Mesh Generation [57.78562932397173]
We propose to exploit a novel hybrid 2D-3D self-prior in deep neural networks to significantly improve the geometry quality.
In particular, we first generate an initial mesh using a 3D convolutional neural network with 3D self-prior, and then encode both 3D information and color information in the 2D UV atlas.
Our method recovers the 3D textured mesh model of high quality from sparse input, and outperforms the state-of-the-art methods in terms of both the geometry and texture quality.
arXiv Detail & Related papers (2021-08-18T07:44:21Z) - Atlas: End-to-End 3D Scene Reconstruction from Posed Images [13.154808583020229]
We present an end-to-end 3D reconstruction method for a scene by directly regressing a truncated signed distance function (TSDF) from a set of posed RGB images.
A 2D CNN extracts features from each image independently which are then back-projected and accumulated into a voxel volume.
A 3D CNN refines the accumulated features and predicts the TSDF values.
arXiv Detail & Related papers (2020-03-23T17:59:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.