Pedestrian Trajectory Prediction via Spatial Interaction Transformer
Network
- URL: http://arxiv.org/abs/2112.06624v1
- Date: Mon, 13 Dec 2021 13:08:04 GMT
- Title: Pedestrian Trajectory Prediction via Spatial Interaction Transformer
Network
- Authors: Tong Su, Yu Meng and Yan Xu
- Abstract summary: In traffic scenes, when encountering with oncoming people, pedestrians may make sudden turns or stop immediately.
To predict such unpredictable trajectories, we can gain insights into the interaction between pedestrians.
We present a novel generative method named Spatial Interaction Transformer (SIT), which learns the correlation of pedestrian trajectories through attention mechanisms.
- Score: 7.150832716115448
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As a core technology of the autonomous driving system, pedestrian trajectory
prediction can significantly enhance the function of active vehicle safety and
reduce road traffic injuries. In traffic scenes, when encountering with
oncoming people, pedestrians may make sudden turns or stop immediately, which
often leads to complicated trajectories. To predict such unpredictable
trajectories, we can gain insights into the interaction between pedestrians. In
this paper, we present a novel generative method named Spatial Interaction
Transformer (SIT), which learns the spatio-temporal correlation of pedestrian
trajectories through attention mechanisms. Furthermore, we introduce the
conditional variational autoencoder (CVAE) framework to model the future latent
motion states of pedestrians. In particular, the experiments based on
large-scale trafc dataset nuScenes [2] show that SIT has an outstanding
performance than state-of-the-art (SOTA) methods. Experimental evaluation on
the challenging ETH and UCY datasets conrms the robustness of our proposed
model
Related papers
- Crossfusor: A Cross-Attention Transformer Enhanced Conditional Diffusion Model for Car-Following Trajectory Prediction [10.814758830775727]
This study introduces a Cross-Attention Transformer Enhanced Diffusion Model (Crossfusor) specifically designed for car-following trajectory prediction.
It integrates detailed inter-vehicular interactions and car-following dynamics into a robust diffusion framework, improving both the accuracy and realism of predicted trajectories.
Experimental results on the NGSIM dataset demonstrate that Crossfusor outperforms state-of-the-art models, particularly in long-term predictions.
arXiv Detail & Related papers (2024-06-17T17:35:47Z) - Attention-aware Social Graph Transformer Networks for Stochastic Trajectory Prediction [16.55909815712467]
Trajectory prediction is fundamental to various intelligent technologies, such as autonomous driving and robotics.
Current trajectory prediction research faces problems of complex social interactions, high dynamics and multi-modality.
We propose Attention-aware Social Graph Transformer Networks for multi-modal trajectory prediction.
arXiv Detail & Related papers (2023-12-26T04:24:01Z) - PedFormer: Pedestrian Behavior Prediction via Cross-Modal Attention
Modulation and Gated Multitask Learning [10.812772606528172]
We propose a novel framework that relies on different data modalities to predict future trajectories and crossing actions of pedestrians from an ego-centric perspective.
We show that our model improves state-of-the-art in trajectory and action prediction by up to 22% and 13% respectively on various metrics.
arXiv Detail & Related papers (2022-10-14T15:12:00Z) - Learning energy-efficient driving behaviors by imitating experts [75.12960180185105]
This paper examines the role of imitation learning in bridging the gap between control strategies and realistic limitations in communication and sensing.
We show that imitation learning can succeed in deriving policies that, if adopted by 5% of vehicles, may boost the energy-efficiency of networks with varying traffic conditions by 15% using only local observations.
arXiv Detail & Related papers (2022-06-28T17:08:31Z) - Pedestrian Stop and Go Forecasting with Hybrid Feature Fusion [87.77727495366702]
We introduce the new task of pedestrian stop and go forecasting.
Considering the lack of suitable existing datasets for it, we release TRANS, a benchmark for explicitly studying the stop and go behaviors of pedestrians in urban traffic.
We build it from several existing datasets annotated with pedestrians' walking motions, in order to have various scenarios and behaviors.
arXiv Detail & Related papers (2022-03-04T18:39:31Z) - Euro-PVI: Pedestrian Vehicle Interactions in Dense Urban Centers [126.81938540470847]
We propose Euro-PVI, a dataset of pedestrian and bicyclist trajectories.
In this work, we develop a joint inference model that learns an expressive multi-modal shared latent space across agents in the urban scene.
We achieve state of the art results on the nuScenes and Euro-PVI datasets demonstrating the importance of capturing interactions between ego-vehicle and pedestrians (bicyclists) for accurate predictions.
arXiv Detail & Related papers (2021-06-22T15:40:21Z) - SGCN:Sparse Graph Convolution Network for Pedestrian Trajectory
Prediction [64.16212996247943]
We present a Sparse Graph Convolution Network(SGCN) for pedestrian trajectory prediction.
Specifically, the SGCN explicitly models the sparse directed interaction with a sparse directed spatial graph to capture adaptive interaction pedestrians.
visualizations indicate that our method can capture adaptive interactions between pedestrians and their effective motion tendencies.
arXiv Detail & Related papers (2021-04-04T03:17:42Z) - Pedestrian Trajectory Prediction using Context-Augmented Transformer
Networks [3.0839245814393728]
We introduce a framework based on the transformer networks that were shown recently to be more efficient and outperformed RNNs in many sequential-based tasks.
We have evaluated our framework on two real-life datasets of pedestrians in shared urban traffic environments.
arXiv Detail & Related papers (2020-12-03T08:43:12Z) - End-to-end Contextual Perception and Prediction with Interaction
Transformer [79.14001602890417]
We tackle the problem of detecting objects in 3D and forecasting their future motion in the context of self-driving.
To capture their spatial-temporal dependencies, we propose a recurrent neural network with a novel Transformer architecture.
Our model can be trained end-to-end, and runs in real-time.
arXiv Detail & Related papers (2020-08-13T14:30:12Z) - Implicit Latent Variable Model for Scene-Consistent Motion Forecasting [78.74510891099395]
In this paper, we aim to learn scene-consistent motion forecasts of complex urban traffic directly from sensor data.
We model the scene as an interaction graph and employ powerful graph neural networks to learn a distributed latent representation of the scene.
arXiv Detail & Related papers (2020-07-23T14:31:25Z) - Probabilistic Crowd GAN: Multimodal Pedestrian Trajectory Prediction
using a Graph Vehicle-Pedestrian Attention Network [12.070251470948772]
We show how Probabilistic Crowd GAN can output probabilistic multimodal predictions.
We also propose the use of Graph Vehicle-Pedestrian Attention Network (GVAT), which models social interactions.
We demonstrate improvements on the existing state of the art methods for trajectory prediction and illustrate how the true multimodal and uncertain nature of crowd interactions can be directly modelled.
arXiv Detail & Related papers (2020-06-23T11:25:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.