論文の概要: CoSDA-ML: Multi-Lingual Code-Switching Data Augmentation for Zero-Shot
Cross-Lingual NLP
- arxiv url: http://arxiv.org/abs/2006.06402v2
- Date: Mon, 13 Jul 2020 04:59:04 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-22 13:49:33.846082
- Title: CoSDA-ML: Multi-Lingual Code-Switching Data Augmentation for Zero-Shot
Cross-Lingual NLP
- Title(参考訳): CoSDA-ML: ゼロショットクロスプラットフォームNLPのための多言語コードスイッチングデータ拡張
- Authors: Libo Qin, Minheng Ni, Yue Zhang, Wanxiang Che
- Abstract要約: 我々は,mBERTを微調整するための多言語コードスイッチングデータを生成するためのデータ拡張フレームワークを提案する。
既存の研究と比較すると,本手法は訓練にバイリンガル文を頼らず,複数の対象言語に対して1つの学習プロセスしか必要としない。
- 参考スコア(独自算出の注目度): 68.2650714613869
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-lingual contextualized embeddings, such as multilingual-BERT (mBERT),
have shown success in a variety of zero-shot cross-lingual tasks. However,
these models are limited by having inconsistent contextualized representations
of subwords across different languages. Existing work addresses this issue by
bilingual projection and fine-tuning technique. We propose a data augmentation
framework to generate multi-lingual code-switching data to fine-tune mBERT,
which encourages model to align representations from source and multiple target
languages once by mixing their context information. Compared with the existing
work, our method does not rely on bilingual sentences for training, and
requires only one training process for multiple target languages. Experimental
results on five tasks with 19 languages show that our method leads to
significantly improved performances for all the tasks compared with mBERT.
- Abstract(参考訳): multilingual-bert (mbert) のような多言語文脈化埋め込みは、様々なゼロショットクロスリンガルタスクで成功を収めている。
しかし、これらのモデルは異なる言語にまたがるサブワードの一貫性のない文脈化表現を持つことで制限される。
既存の作業は、バイリンガルプロジェクションと微調整技術によってこの問題に対処している。
本稿では,mbertを微調整するための多言語コード切り換えデータを生成するためのデータ拡張フレームワークを提案する。
既存の研究と比較すると,本手法は訓練にバイリンガル文を頼らず,複数の対象言語に対して1つの学習プロセスしか必要としない。
19言語からなる5つのタスクの実験結果から,本手法はmBERTと比較して,全タスクのパフォーマンスを著しく向上させることが示された。
関連論文リスト
- Efficiently Aligned Cross-Lingual Transfer Learning for Conversational
Tasks using Prompt-Tuning [98.60739735409243]
英語のような高リソース言語で訓練された言語モデルの言語間移動は、多くのNLPタスクのために広く研究されている。
並列および大規模多言語会話データセットである言語間アライメント事前学習のためのXSGDを導入する。
協調的な言語間表現を容易にするために,アライメントプロンプトを学習するための効率的なプロンプトチューニング手法を開発した。
論文 参考訳(メタデータ) (2023-04-03T18:46:01Z) - Multilingual Multimodal Learning with Machine Translated Text [27.7207234512674]
英語のマルチモーダルデータの機械翻訳が、容易に利用できる多言語データの欠如を抑えるための効果的なプロキシとなるかどうかを考察する。
得られたデータセットからそのような翻訳を自動的に除去する2つの指標を提案する。
In experiment on five task across 20 languages in the IGLUE benchmark, we show that translated data can provide a useful signal for multilingual multimodal learning。
論文 参考訳(メタデータ) (2022-10-24T11:41:20Z) - Bootstrapping Multilingual Semantic Parsers using Large Language Models [28.257114724384806]
複数の言語にまたがって英語データセットを転送するTranslation-trainパラダイムは、タスク固有の多言語モデルをトレーニングする上で重要な要素である。
本稿では,多言語意味解析の課題を考察し,英語データセットを複数言語に翻訳する大規模言語モデル(LLM)の有効性と柔軟性を示す。
論文 参考訳(メタデータ) (2022-10-13T19:34:14Z) - Bridging Cross-Lingual Gaps During Leveraging the Multilingual
Sequence-to-Sequence Pretraining for Text Generation [80.16548523140025]
プレトレインとファインチューンの間のギャップを埋めるために、コードスイッチングの復元タスクを追加して、バニラプレトレイン-ファインチューンパイプラインを拡張します。
提案手法は,言語間文表現距離を狭くし,簡単な計算コストで低周波語翻訳を改善する。
論文 参考訳(メタデータ) (2022-04-16T16:08:38Z) - On Efficiently Acquiring Annotations for Multilingual Models [12.304046317362792]
一つのモデルを用いて複数の言語にまたがる共同学習の戦略は、上記の選択肢よりもかなり優れていることを示す。
この単純なアプローチにより、アノテーションの予算を不確実な言語に問い合わせることによって、モデルがデータ効率を向上できることを示す。
論文 参考訳(メタデータ) (2022-04-03T07:42:13Z) - Are Multilingual Models Effective in Code-Switching? [57.78477547424949]
多言語モデルの有効性を検討し,複合言語設定の能力と適応性について検討する。
この結果から,事前学習した多言語モデルでは,コードスイッチングにおける高品質な表現が必ずしも保証されないことが示唆された。
論文 参考訳(メタデータ) (2021-03-24T16:20:02Z) - UNKs Everywhere: Adapting Multilingual Language Models to New Scripts [103.79021395138423]
マルチリンガルBERT(mBERT)やXLM-Rのような多言語言語モデルは、様々なNLPタスクに対して最先端の言語間転送性能を提供する。
キャパシティの制限と事前トレーニングデータの大きな差のため、リソース豊富な言語とリソースを対象とする言語には大きなパフォーマンスギャップがある。
本稿では,事前学習した多言語モデルの低リソース言語や未知のスクリプトへの高速かつ効果的な適応を可能にする新しいデータ効率手法を提案する。
論文 参考訳(メタデータ) (2020-12-31T11:37:28Z) - GLUECoS : An Evaluation Benchmark for Code-Switched NLP [17.066725832825423]
コード切替言語に対する評価ベンチマーク GLUECoS を提案する。
英語・ヒンディー語・英語・スペイン語におけるNLP課題について報告する。
我々は、人工的に生成されたコード切替データに基づいて、多言語モデルを微調整する。
論文 参考訳(メタデータ) (2020-04-26T13:28:34Z) - Learning to Scale Multilingual Representations for Vision-Language Tasks [51.27839182889422]
SMALRの有効性は、これまでビジョン言語タスクでサポートされた2倍以上の10の多言語で実証されている。
単語の埋め込み手法と比較して,訓練パラメータの1/5以下で,複数言語による画像文検索と先行作業の3~4%の性能評価を行った。
論文 参考訳(メタデータ) (2020-04-09T01:03:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。