論文の概要: LUSIFER: Language Universal Space Integration for Enhanced Multilingual Embeddings with Large Language Models
- arxiv url: http://arxiv.org/abs/2501.00874v1
- Date: Wed, 01 Jan 2025 15:43:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-05 17:15:27.370271
- Title: LUSIFER: Language Universal Space Integration for Enhanced Multilingual Embeddings with Large Language Models
- Title(参考訳): LUSIFER:大規模言語モデルによる拡張多言語埋め込みのための言語ユニバーサルスペース統合
- Authors: Hieu Man, Nghia Trung Ngo, Viet Dac Lai, Ryan A. Rossi, Franck Dernoncourt, Thien Huu Nguyen,
- Abstract要約: LUSIFERは,LLMをベースとした多言語タスクの埋め込みモデルに,多言語監視を必要とせずに適用可能なゼロショット方式である。
LUSIFERのアーキテクチャは多言語エンコーダを組み、言語ユニバーサル学習者として機能し、埋め込み固有のタスクに最適化されたLLMベースの埋め込みモデルと組み合わせている。
5つの主要な埋め込みタスク、123の多様なデータセット、14言語にわたるカバレッジを含む新しいベンチマークを導入する。
- 参考スコア(独自算出の注目度): 89.13128402847943
- License:
- Abstract: Recent advancements in large language models (LLMs) based embedding models have established new state-of-the-art benchmarks for text embedding tasks, particularly in dense vector-based retrieval. However, these models predominantly focus on English, leaving multilingual embedding capabilities largely unexplored. To address this limitation, we present LUSIFER, a novel zero-shot approach that adapts LLM-based embedding models for multilingual tasks without requiring multilingual supervision. LUSIFER's architecture combines a multilingual encoder, serving as a language-universal learner, with an LLM-based embedding model optimized for embedding-specific tasks. These components are seamlessly integrated through a minimal set of trainable parameters that act as a connector, effectively transferring the multilingual encoder's language understanding capabilities to the specialized embedding model. Additionally, to comprehensively evaluate multilingual embedding performance, we introduce a new benchmark encompassing 5 primary embedding tasks, 123 diverse datasets, and coverage across 14 languages. Extensive experimental results demonstrate that LUSIFER significantly enhances the multilingual performance across various embedding tasks, particularly for medium and low-resource languages, without requiring explicit multilingual training data.
- Abstract(参考訳): 大規模言語モデル (LLMs) に基づく埋め込みモデルの最近の進歩は、特に高密度ベクトルベース検索において、テキスト埋め込みタスクのための最先端のベンチマークを確立している。
しかし、これらのモデルは主に英語に焦点を当てており、多言語埋め込み能力はほとんど探索されていない。
この制限に対処するために、LUSIFERという新しいゼロショットアプローチを提案し、マルチリンガル監視を必要とせず、LLMベースの埋め込みモデルを多言語タスクに適用する。
LUSIFERのアーキテクチャは多言語エンコーダを組み、言語ユニバーサル学習者として機能し、埋め込み固有のタスクに最適化されたLLMベースの埋め込みモデルと組み合わせている。
これらのコンポーネントは、コネクタとして機能する最小限のトレーニング可能なパラメータセットを通じてシームレスに統合され、多言語エンコーダの言語理解能力を特別な埋め込みモデルに効果的に転送する。
さらに、多言語埋め込み性能を総合的に評価するために、5つの主要な埋め込みタスク、123の多様なデータセット、14言語にわたるカバレッジを含む新しいベンチマークを導入する。
LUSIFERは, 各種埋め込みタスク, 特に中低リソース言語において, 明示的な多言語学習データを必要としない多言語性能を著しく向上することを示した。
関連論文リスト
- Mitigating Language-Level Performance Disparity in mPLMs via Teacher Language Selection and Cross-lingual Self-Distillation [25.850573463743352]
大規模多言語事前訓練言語モデル(mPLMs)は、言語横断タスクにおいて優れた性能を発揮する。
しかし、mPLM内では異なる言語にまたがって大きな性能格差が存在する。
我々は ALSACE を導入し,優れた言語から学んだ知識を活用して,mPLM の低性能言語を誘導する。
論文 参考訳(メタデータ) (2024-04-12T14:19:16Z) - ColBERT-XM: A Modular Multi-Vector Representation Model for Zero-Shot
Multilingual Information Retrieval [10.664434993386523]
現在のアプローチは、非英語言語における高品質なラベル付きデータの欠如を回避している。
本稿では,単一の高リソース言語のリッチデータから学習するモジュール型高密度検索モデルを提案する。
論文 参考訳(メタデータ) (2024-02-23T02:21:24Z) - UltraLink: An Open-Source Knowledge-Enhanced Multilingual Supervised
Fine-tuning Dataset [69.33424532827608]
オープンソースの大規模言語モデル(LLM)は、様々な分野において大きな強みを持っている。
本研究では,オープンソースの多言語教師付き微調整データセットを構築する。
結果として得られたUltraLinkデータセットは、5つの言語にわたる約100万のサンプルで構成されている。
論文 参考訳(メタデータ) (2024-02-07T05:05:53Z) - XSemPLR: Cross-Lingual Semantic Parsing in Multiple Natural Languages
and Meaning Representations [25.50509874992198]
Cross-Lingual Semantic Parsingは、複数の自然言語のクエリを意味表現に変換することを目的としている。
既存のCLSPモデルは個別に提案され、限られたタスクやアプリケーションのデータセット上で評価される。
XSemPLRは、22の自然言語と8つの意味表現を特徴とする言語間意味解析のための統一的なベンチマークである。
論文 参考訳(メタデータ) (2023-06-07T01:09:37Z) - Multi2WOZ: A Robust Multilingual Dataset and Conversational Pretraining
for Task-Oriented Dialog [67.20796950016735]
Multi2WOZデータセットは、中国語、ドイツ語、アラビア語、ロシア語の4つの言語にまたがる。
本稿では,任意の下流TODタスクに対する言語間移動を容易にすることを目的とした,事前学習言語モデル(PrLM)の多言語会話特化のための新しいフレームワークを提案する。
実験の結果,目標言語における(I)会話の特殊化と,(II)具体的なTODタスクのための少数ショット転送の組み合わせが,ほとんどの場合,最高の性能を示すことがわかった。
論文 参考訳(メタデータ) (2022-05-20T18:35:38Z) - UNKs Everywhere: Adapting Multilingual Language Models to New Scripts [103.79021395138423]
マルチリンガルBERT(mBERT)やXLM-Rのような多言語言語モデルは、様々なNLPタスクに対して最先端の言語間転送性能を提供する。
キャパシティの制限と事前トレーニングデータの大きな差のため、リソース豊富な言語とリソースを対象とする言語には大きなパフォーマンスギャップがある。
本稿では,事前学習した多言語モデルの低リソース言語や未知のスクリプトへの高速かつ効果的な適応を可能にする新しいデータ効率手法を提案する。
論文 参考訳(メタデータ) (2020-12-31T11:37:28Z) - CoSDA-ML: Multi-Lingual Code-Switching Data Augmentation for Zero-Shot
Cross-Lingual NLP [68.2650714613869]
我々は,mBERTを微調整するための多言語コードスイッチングデータを生成するためのデータ拡張フレームワークを提案する。
既存の研究と比較すると,本手法は訓練にバイリンガル文を頼らず,複数の対象言語に対して1つの学習プロセスしか必要としない。
論文 参考訳(メタデータ) (2020-06-11T13:15:59Z) - Learning to Scale Multilingual Representations for Vision-Language Tasks [51.27839182889422]
SMALRの有効性は、これまでビジョン言語タスクでサポートされた2倍以上の10の多言語で実証されている。
単語の埋め込み手法と比較して,訓練パラメータの1/5以下で,複数言語による画像文検索と先行作業の3~4%の性能評価を行った。
論文 参考訳(メタデータ) (2020-04-09T01:03:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。