論文の概要: Convergence of adaptive algorithms for weakly convex constrained
optimization
- arxiv url: http://arxiv.org/abs/2006.06650v1
- Date: Thu, 11 Jun 2020 17:43:19 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-22 13:14:55.112039
- Title: Convergence of adaptive algorithms for weakly convex constrained
optimization
- Title(参考訳): 弱凸制約最適化のための適応アルゴリズムの収束性
- Authors: Ahmet Alacaoglu, Yura Malitsky, Volkan Cevher
- Abstract要約: モローエンベロープの勾配のノルムに対して$mathcaltilde O(t-1/4)$収束率を証明する。
我々の分析では、最小バッチサイズが1ドル、定数が1位と2位のモーメントパラメータが1ドル、そしておそらくスムーズな最適化ドメインで機能する。
- 参考スコア(独自算出の注目度): 59.36386973876765
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We analyze the adaptive first order algorithm AMSGrad, for solving a
constrained stochastic optimization problem with a weakly convex objective. We
prove the $\mathcal{\tilde O}(t^{-1/4})$ rate of convergence for the norm of
the gradient of Moreau envelope, which is the standard stationarity measure for
this class of problems. It matches the known rates that adaptive algorithms
enjoy for the specific case of unconstrained smooth stochastic optimization.
Our analysis works with mini-batch size of $1$, constant first and second order
moment parameters, and possibly unbounded optimization domains. Finally, we
illustrate the applications and extensions of our results to specific problems
and algorithms.
- Abstract(参考訳): 適応1次アルゴリズム AMSGrad を解析し、制約付き確率最適化問題を弱凸目的で解く。
我々は、モロー包絡の勾配のノルムに対する収束率の $\mathcal{\tilde o}(t^{-1/4})$ を証明する。
これは、適応アルゴリズムが制約のない滑らかな確率最適化の特定のケースで楽しむ既知のレートと一致する。
私たちの分析では、ミニバッチサイズである1ドルの1次および2次モーメントパラメータ、そしておそらくは無制限の最適化ドメインで動作します。
最後に、特定の問題やアルゴリズムに対する結果の応用と拡張について説明する。
関連論文リスト
- A simple uniformly optimal method without line search for convex optimization [9.280355951055865]
パラメータが優先されていない凸最適化問題の解法として最適収束率を得るには,線探索が過剰であることを示す。
滑らかな凸最適化のために最適な$mathcalO (1/k2)$収束率を達成できるAC-FGMと呼ばれる新しい勾配降下型アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-10-16T05:26:03Z) - Accelerated First-Order Optimization under Nonlinear Constraints [73.2273449996098]
我々は、制約付き最適化のための一階アルゴリズムと非滑らかなシステムの間で、新しい一階アルゴリズムのクラスを設計する。
これらのアルゴリズムの重要な性質は、制約がスパース変数の代わりに速度で表されることである。
論文 参考訳(メタデータ) (2023-02-01T08:50:48Z) - Adaptive Stochastic Optimisation of Nonconvex Composite Objectives [2.1700203922407493]
一般化された複合ミラー降下アルゴリズムの一群を提案し,解析する。
適応的なステップサイズでは、提案アルゴリズムは問題の事前知識を必要とせずに収束する。
決定集合の低次元構造を高次元問題に活用する。
論文 参考訳(メタデータ) (2022-11-21T18:31:43Z) - Near-Optimal Algorithms for Making the Gradient Small in Stochastic
Minimax Optimization [14.719077076351377]
本研究では,スムーズなミニマックス最適化のための準定常点を求める問題について検討する。
Recursive IteratioNRAINと呼ばれる新しいアルゴリズムは凸凹と強凹の両方のケースを実現する。
論文 参考訳(メタデータ) (2022-08-11T16:55:26Z) - Unified Convergence Analysis for Adaptive Optimization with Moving Average Estimator [75.05106948314956]
1次モーメントに対する大きな運動量パラメータの増大は適応的スケーリングに十分であることを示す。
また,段階的に減少するステップサイズに応じて,段階的に運動量を増加させるための洞察を与える。
論文 参考訳(メタデータ) (2021-04-30T08:50:24Z) - Recent Theoretical Advances in Non-Convex Optimization [56.88981258425256]
近年、深層ネットワークにおける非最適化アルゴリズムの解析やデータ問題への関心が高まっており、非最適化のための理論的最適化アルゴリズムの最近の結果の概要を概説する。
論文 参考訳(メタデータ) (2020-12-11T08:28:51Z) - Adaptive extra-gradient methods for min-max optimization and games [35.02879452114223]
本稿では,初期の反復で観測された勾配データの幾何を自動的に活用する,minmax最適化アルゴリズムの新たなファミリーを提案する。
この適応機構により,提案手法は問題がスムーズかどうかを自動的に検出する。
滑らかな問題における$mathcalO (1/varepsilon)$反復と、非滑らかな問題における$mathcalO (1/varepsilon)$反復に収束する。
論文 参考訳(メタデータ) (2020-10-22T22:54:54Z) - A Two-Timescale Framework for Bilevel Optimization: Complexity Analysis
and Application to Actor-Critic [142.1492359556374]
双レベル最適化は、2レベル構造を示す問題のクラスである。
このような二段階問題に対処するための2段階近似(TTSA)アルゴリズムを提案する。
本稿では,TTSAフレームワークの特殊な事例として,2段階の自然なアクター・クリティカルポリシー最適化アルゴリズムが有用であることを示す。
論文 参考訳(メタデータ) (2020-07-10T05:20:02Z) - Adaptive First-and Zeroth-order Methods for Weakly Convex Stochastic
Optimization Problems [12.010310883787911]
我々は、弱凸(おそらく非滑らかな)最適化問題の重要なクラスを解くための、適応的な段階的な新しい手法の族を解析する。
実験結果から,提案アルゴリズムが0次勾配降下と設計変動を経験的に上回ることを示す。
論文 参考訳(メタデータ) (2020-05-19T07:44:52Z) - Private Stochastic Convex Optimization: Optimal Rates in Linear Time [74.47681868973598]
本研究では,凸損失関数の分布から得られた個体群損失を最小化する問題について検討する。
Bassilyらによる最近の研究は、$n$のサンプルを与えられた過剰な人口損失の最適境界を確立している。
本稿では,余剰損失に対する最適境界を達成するとともに,$O(minn, n2/d)$グラデーション計算を用いて凸最適化アルゴリズムを導出する2つの新しい手法について述べる。
論文 参考訳(メタデータ) (2020-05-10T19:52:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。