論文の概要: Unified Convergence Analysis for Adaptive Optimization with Moving Average Estimator
- arxiv url: http://arxiv.org/abs/2104.14840v5
- Date: Sat, 09 Nov 2024 18:13:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-12 14:03:38.054931
- Title: Unified Convergence Analysis for Adaptive Optimization with Moving Average Estimator
- Title(参考訳): 移動平均推定器を用いた適応最適化のための統一収束解析
- Authors: Zhishuai Guo, Yi Xu, Wotao Yin, Rong Jin, Tianbao Yang,
- Abstract要約: 1次モーメントに対する大きな運動量パラメータの増大は適応的スケーリングに十分であることを示す。
また,段階的に減少するステップサイズに応じて,段階的に運動量を増加させるための洞察を与える。
- 参考スコア(独自算出の注目度): 75.05106948314956
- License:
- Abstract: Although adaptive optimization algorithms have been successful in many applications, there are still some mysteries in terms of convergence analysis that have not been unraveled. This paper provides a novel non-convex analysis of adaptive optimization to uncover some of these mysteries. Our contributions are three-fold. First, we show that an increasing or large enough momentum parameter for the first-order moment used in practice is sufficient to ensure the convergence of adaptive algorithms whose adaptive scaling factors of the step size are bounded. Second, our analysis gives insights for practical implementations, e.g., increasing the momentum parameter in a stage-wise manner in accordance with stagewise decreasing step size would help improve the convergence. Third, the modular nature of our analysis allows its extension to solving other optimization problems, e.g., compositional, min-max and bilevel problems. As an interesting yet non-trivial use case, we present algorithms for solving non-convex min-max optimization and bilevel optimization that do not require using large batches of data to estimate gradients or double loops as the literature do. Our empirical studies corroborate our theoretical results.
- Abstract(参考訳): 適応最適化アルゴリズムは多くのアプリケーションで成功したが、収束解析に関してまだ解明されていない謎がいくつか残っている。
本稿では,これらの謎のいくつかを明らかにするために,適応最適化の非凸解析を行う。
私たちの貢献は3倍です。
まず, ステップサイズの適応的スケーリング係数が有界である適応アルゴリズムの収束を確保するために, 実際に使用される一階モーメントの増大あるいは十分な運動量パラメータが十分であることを示す。
第2に,段階的に減少するステップサイズに応じて運動量パラメータを段階的に増加させることにより,収束性の向上が期待できる。
第三に、解析のモジュラー性は、他の最適化問題(例えば、合成問題、min-max問題、双レベル問題)への拡張を可能にする。
興味深いが非自明なユースケースとして、文献のように勾配や二重ループを推定するために大量のデータを使う必要のない、非凸のmin-max最適化と双レベル最適化を解くアルゴリズムを提案する。
我々の実証研究は我々の理論結果を裏付ける。
関連論文リスト
- Provably Faster Algorithms for Bilevel Optimization via Without-Replacement Sampling [96.47086913559289]
勾配に基づくアルゴリズムはバイレベル最適化に広く用いられている。
本研究では,より高速な収束率を実現する非置換サンプリングに基づくアルゴリズムを提案する。
合成および実世界の両方のアプリケーションに対してアルゴリズムを検証する。
論文 参考訳(メタデータ) (2024-11-07T17:05:31Z) - Faster Riemannian Newton-type Optimization by Subsampling and Cubic
Regularization [3.867143522757309]
この研究は、制約集合が多様体構造を意味するような制約付き大規模非制約最適化に関するものである。
本稿では,収束性の向上と計算コストの削減を目的とした2階サドル最適化アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-02-22T00:37:44Z) - A theoretical and empirical study of new adaptive algorithms with
additional momentum steps and shifted updates for stochastic non-convex
optimization [0.0]
適応最適化アルゴリズムは学習分野の鍵となる柱を表現していると考えられる。
本稿では,異なる非滑らかな目的問題に対する適応運動量法を提案する。
論文 参考訳(メタデータ) (2021-10-16T09:47:57Z) - Bilevel Optimization: Convergence Analysis and Enhanced Design [63.64636047748605]
バイレベル最適化は多くの機械学習問題に対するツールである。
Stoc-BiO という新しい確率効率勾配推定器を提案する。
論文 参考訳(メタデータ) (2020-10-15T18:09:48Z) - BAMSProd: A Step towards Generalizing the Adaptive Optimization Methods
to Deep Binary Model [34.093978443640616]
最近のBNN(Binary Neural Networks)の性能は大幅に低下している。
BNNの効果的かつ効率的なトレーニングを保証することは未解決の問題である。
そこで本研究では,BAMSProdアルゴリズムを用いて,深部二元モデルの収束特性が量子化誤差と強く関連していることを示す。
論文 参考訳(メタデータ) (2020-09-29T06:12:32Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
モローエンベロープの勾配のノルムに対して$mathcaltilde O(t-1/4)$収束率を証明する。
我々の分析では、最小バッチサイズが1ドル、定数が1位と2位のモーメントパラメータが1ドル、そしておそらくスムーズな最適化ドメインで機能する。
論文 参考訳(メタデータ) (2020-06-11T17:43:19Z) - A Primer on Zeroth-Order Optimization in Signal Processing and Machine
Learning [95.85269649177336]
ZO最適化は、勾配推定、降下方向、ソリューション更新の3つの主要なステップを反復的に実行する。
我々は,ブラックボックス深層学習モデルによる説明文の評価や生成,効率的なオンラインセンサ管理など,ZO最適化の有望な応用を実証する。
論文 参考訳(メタデータ) (2020-06-11T06:50:35Z) - Adaptive First-and Zeroth-order Methods for Weakly Convex Stochastic
Optimization Problems [12.010310883787911]
我々は、弱凸(おそらく非滑らかな)最適化問題の重要なクラスを解くための、適応的な段階的な新しい手法の族を解析する。
実験結果から,提案アルゴリズムが0次勾配降下と設計変動を経験的に上回ることを示す。
論文 参考訳(メタデータ) (2020-05-19T07:44:52Z) - Adaptivity of Stochastic Gradient Methods for Nonconvex Optimization [71.03797261151605]
適応性は現代最適化理論において重要であるが、研究されていない性質である。
提案アルゴリズムは,PL目標に対して既存のアルゴリズムよりも優れた性能を保ちながら,PL目標に対して最適な収束性を実現することを実証した。
論文 参考訳(メタデータ) (2020-02-13T05:42:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。