Getting a CLUE: A Method for Explaining Uncertainty Estimates
- URL: http://arxiv.org/abs/2006.06848v2
- Date: Thu, 18 Mar 2021 11:26:59 GMT
- Title: Getting a CLUE: A Method for Explaining Uncertainty Estimates
- Authors: Javier Antor\'an, Umang Bhatt, Tameem Adel, Adrian Weller, Jos\'e
Miguel Hern\'andez-Lobato
- Abstract summary: We propose a novel method for interpreting uncertainty estimates from differentiable probabilistic models.
Our method, Counterfactual Latent Uncertainty Explanations (CLUE), indicates how to change an input, while keeping it on the data manifold.
- Score: 30.367995696223726
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Both uncertainty estimation and interpretability are important factors for
trustworthy machine learning systems. However, there is little work at the
intersection of these two areas. We address this gap by proposing a novel
method for interpreting uncertainty estimates from differentiable probabilistic
models, like Bayesian Neural Networks (BNNs). Our method, Counterfactual Latent
Uncertainty Explanations (CLUE), indicates how to change an input, while
keeping it on the data manifold, such that a BNN becomes more confident about
the input's prediction. We validate CLUE through 1) a novel framework for
evaluating counterfactual explanations of uncertainty, 2) a series of ablation
experiments, and 3) a user study. Our experiments show that CLUE outperforms
baselines and enables practitioners to better understand which input patterns
are responsible for predictive uncertainty.
Related papers
- Error-Driven Uncertainty Aware Training [7.702016079410588]
Error-Driven Uncertainty Aware Training aims to enhance the ability of neural classifiers to estimate their uncertainty correctly.
The EUAT approach operates during the model's training phase by selectively employing two loss functions depending on whether the training examples are correctly or incorrectly predicted.
We evaluate EUAT using diverse neural models and datasets in the image recognition domains considering both non-adversarial and adversarial settings.
arXiv Detail & Related papers (2024-05-02T11:48:14Z) - Identifying Drivers of Predictive Aleatoric Uncertainty [2.5311562666866494]
We present a simple approach to explain predictive aleatoric uncertainties.
We estimate uncertainty as predictive variance by adapting a neural network with a Gaussian output distribution.
We quantify our findings with a nuanced benchmark analysis that includes real-world datasets.
arXiv Detail & Related papers (2023-12-12T13:28:53Z) - Decomposing Uncertainty for Large Language Models through Input Clarification Ensembling [69.83976050879318]
In large language models (LLMs), identifying sources of uncertainty is an important step toward improving reliability, trustworthiness, and interpretability.
In this paper, we introduce an uncertainty decomposition framework for LLMs, called input clarification ensembling.
Our approach generates a set of clarifications for the input, feeds them into an LLM, and ensembles the corresponding predictions.
arXiv Detail & Related papers (2023-11-15T05:58:35Z) - Ensemble Neural Networks for Remaining Useful Life (RUL) Prediction [0.39287497907611874]
A core part of maintenance planning is a monitoring system that provides a good prognosis on health and degradation.
Here, we propose ensemble neural networks for probabilistic RUL predictions which considers both uncertainties and decouples these two uncertainties.
This method is tested on NASA's turbofan jet engine CMAPSS data-set.
arXiv Detail & Related papers (2023-09-21T19:38:44Z) - Uncertainty Propagation in Node Classification [9.03984964980373]
We focus on measuring uncertainty of graph neural networks (GNNs) for the task of node classification.
We propose a Bayesian uncertainty propagation (BUP) method, which embeds GNNs in a Bayesian modeling framework.
We present an uncertainty oriented loss for node classification that allows the GNNs to clearly integrate predictive uncertainty in learning procedure.
arXiv Detail & Related papers (2023-04-03T12:18:23Z) - Reliability-Aware Prediction via Uncertainty Learning for Person Image
Retrieval [51.83967175585896]
UAL aims at providing reliability-aware predictions by considering data uncertainty and model uncertainty simultaneously.
Data uncertainty captures the noise" inherent in the sample, while model uncertainty depicts the model's confidence in the sample's prediction.
arXiv Detail & Related papers (2022-10-24T17:53:20Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
We show the principled way to measure the uncertainty of predictions for a classifier based on Nadaraya-Watson's nonparametric estimate of the conditional label distribution.
We demonstrate the strong performance of the method in uncertainty estimation tasks on a variety of real-world image datasets.
arXiv Detail & Related papers (2022-02-07T12:30:45Z) - Robust uncertainty estimates with out-of-distribution pseudo-inputs
training [0.0]
We propose to explicitly train the uncertainty predictor where we are not given data to make it reliable.
As one cannot train without data, we provide mechanisms for generating pseudo-inputs in informative low-density regions of the input space.
With a holistic evaluation, we demonstrate that this yields robust and interpretable predictions of uncertainty while retaining state-of-the-art performance on diverse tasks.
arXiv Detail & Related papers (2022-01-15T17:15:07Z) - Dense Uncertainty Estimation via an Ensemble-based Conditional Latent
Variable Model [68.34559610536614]
We argue that the aleatoric uncertainty is an inherent attribute of the data and can only be correctly estimated with an unbiased oracle model.
We propose a new sampling and selection strategy at train time to approximate the oracle model for aleatoric uncertainty estimation.
Our results show that our solution achieves both accurate deterministic results and reliable uncertainty estimation.
arXiv Detail & Related papers (2021-11-22T08:54:10Z) - Learning Uncertainty For Safety-Oriented Semantic Segmentation In
Autonomous Driving [77.39239190539871]
We show how uncertainty estimation can be leveraged to enable safety critical image segmentation in autonomous driving.
We introduce a new uncertainty measure based on disagreeing predictions as measured by a dissimilarity function.
We show experimentally that our proposed approach is much less computationally intensive at inference time than competing methods.
arXiv Detail & Related papers (2021-05-28T09:23:05Z) - Uncertainty as a Form of Transparency: Measuring, Communicating, and
Using Uncertainty [66.17147341354577]
We argue for considering a complementary form of transparency by estimating and communicating the uncertainty associated with model predictions.
We describe how uncertainty can be used to mitigate model unfairness, augment decision-making, and build trustworthy systems.
This work constitutes an interdisciplinary review drawn from literature spanning machine learning, visualization/HCI, design, decision-making, and fairness.
arXiv Detail & Related papers (2020-11-15T17:26:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.