Decomposing Uncertainty for Large Language Models through Input Clarification Ensembling
- URL: http://arxiv.org/abs/2311.08718v2
- Date: Mon, 10 Jun 2024 21:17:24 GMT
- Title: Decomposing Uncertainty for Large Language Models through Input Clarification Ensembling
- Authors: Bairu Hou, Yujian Liu, Kaizhi Qian, Jacob Andreas, Shiyu Chang, Yang Zhang,
- Abstract summary: In large language models (LLMs), identifying sources of uncertainty is an important step toward improving reliability, trustworthiness, and interpretability.
In this paper, we introduce an uncertainty decomposition framework for LLMs, called input clarification ensembling.
Our approach generates a set of clarifications for the input, feeds them into an LLM, and ensembles the corresponding predictions.
- Score: 69.83976050879318
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Uncertainty decomposition refers to the task of decomposing the total uncertainty of a predictive model into aleatoric (data) uncertainty, resulting from inherent randomness in the data-generating process, and epistemic (model) uncertainty, resulting from missing information in the model's training data. In large language models (LLMs) specifically, identifying sources of uncertainty is an important step toward improving reliability, trustworthiness, and interpretability, but remains an important open research question. In this paper, we introduce an uncertainty decomposition framework for LLMs, called input clarification ensembling, which can be applied to any pre-trained LLM. Our approach generates a set of clarifications for the input, feeds them into an LLM, and ensembles the corresponding predictions. We show that, when aleatoric uncertainty arises from ambiguity or under-specification in LLM inputs, this approach makes it possible to factor an (unclarified) LLM's predictions into separate aleatoric and epistemic terms, using a decomposition similar to the one employed by Bayesian neural networks. Empirical evaluations demonstrate that input clarification ensembling provides accurate and reliable uncertainty quantification on several language processing tasks. Code and data are available at https://github.com/UCSB-NLP-Chang/llm_uncertainty.
Related papers
- CLUE: Concept-Level Uncertainty Estimation for Large Language Models [49.92690111618016]
We propose a novel framework for Concept-Level Uncertainty Estimation for Large Language Models (LLMs)
We leverage LLMs to convert output sequences into concept-level representations, breaking down sequences into individual concepts and measuring the uncertainty of each concept separately.
We conduct experiments to demonstrate that CLUE can provide more interpretable uncertainty estimation results compared with sentence-level uncertainty.
arXiv Detail & Related papers (2024-09-04T18:27:12Z) - Unified Uncertainties: Combining Input, Data and Model Uncertainty into a Single Formulation [6.144680854063938]
We propose a method for propagating uncertainty in the inputs through a Neural Network.
Our results show that this propagation of input uncertainty results in a more stable decision boundary.
We discuss and demonstrate that input uncertainty, when propagated through the model, results in model uncertainty at the outputs.
arXiv Detail & Related papers (2024-06-26T23:13:45Z) - Cycles of Thought: Measuring LLM Confidence through Stable Explanations [53.15438489398938]
Large language models (LLMs) can reach and even surpass human-level accuracy on a variety of benchmarks, but their overconfidence in incorrect responses is still a well-documented failure mode.
We propose a framework for measuring an LLM's uncertainty with respect to the distribution of generated explanations for an answer.
arXiv Detail & Related papers (2024-06-05T16:35:30Z) - Kernel Language Entropy: Fine-grained Uncertainty Quantification for LLMs from Semantic Similarities [79.9629927171974]
Uncertainty in Large Language Models (LLMs) is crucial for applications where safety and reliability are important.
We propose Kernel Language Entropy (KLE), a novel method for uncertainty estimation in white- and black-box LLMs.
arXiv Detail & Related papers (2024-05-30T12:42:05Z) - Uncertainty Quantification for In-Context Learning of Large Language Models [52.891205009620364]
In-context learning has emerged as a groundbreaking ability of Large Language Models (LLMs)
We propose a novel formulation and corresponding estimation method to quantify both types of uncertainties.
The proposed method offers an unsupervised way to understand the prediction of in-context learning in a plug-and-play fashion.
arXiv Detail & Related papers (2024-02-15T18:46:24Z) - Distinguishing the Knowable from the Unknowable with Language Models [15.471748481627143]
In the absence of ground-truth probabilities, we explore a setting where, in order to disentangle a given uncertainty, a significantly larger model stands in as a proxy for the ground truth.
We show that small linear probes trained on the embeddings of frozen, pretrained models accurately predict when larger models will be more confident at the token level.
We propose a fully unsupervised method that achieves non-trivial accuracy on the same task.
arXiv Detail & Related papers (2024-02-05T22:22:49Z) - Quantifying Uncertainty in Natural Language Explanations of Large
Language Models [29.34960984639281]
Large Language Models (LLMs) are increasingly used as powerful tools for high-stakes natural language processing (NLP) applications.
We propose two novel metrics -- $textitVerbalized Uncertainty$ and $textitProbing Uncertainty$ -- to quantify the uncertainty of generated explanations.
Our empirical analysis of benchmark datasets reveals that verbalized uncertainty is not a reliable estimate of explanation confidence.
arXiv Detail & Related papers (2023-11-06T21:14:40Z) - Quantification of Predictive Uncertainty via Inference-Time Sampling [57.749601811982096]
We propose a post-hoc sampling strategy for estimating predictive uncertainty accounting for data ambiguity.
The method can generate different plausible outputs for a given input and does not assume parametric forms of predictive distributions.
arXiv Detail & Related papers (2023-08-03T12:43:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.