Ensemble Neural Networks for Remaining Useful Life (RUL) Prediction
- URL: http://arxiv.org/abs/2309.12445v1
- Date: Thu, 21 Sep 2023 19:38:44 GMT
- Title: Ensemble Neural Networks for Remaining Useful Life (RUL) Prediction
- Authors: Ahbishek Srinivasan, Juan Carlos Andresen, Anders Holst
- Abstract summary: A core part of maintenance planning is a monitoring system that provides a good prognosis on health and degradation.
Here, we propose ensemble neural networks for probabilistic RUL predictions which considers both uncertainties and decouples these two uncertainties.
This method is tested on NASA's turbofan jet engine CMAPSS data-set.
- Score: 0.39287497907611874
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A core part of maintenance planning is a monitoring system that provides a
good prognosis on health and degradation, often expressed as remaining useful
life (RUL). Most of the current data-driven approaches for RUL prediction focus
on single-point prediction. These point prediction approaches do not include
the probabilistic nature of the failure. The few probabilistic approaches to
date either include the aleatoric uncertainty (which originates from the
system), or the epistemic uncertainty (which originates from the model
parameters), or both simultaneously as a total uncertainty. Here, we propose
ensemble neural networks for probabilistic RUL predictions which considers both
uncertainties and decouples these two uncertainties. These decoupled
uncertainties are vital in knowing and interpreting the confidence of the
predictions. This method is tested on NASA's turbofan jet engine CMAPSS
data-set. Our results show how these uncertainties can be modeled and how to
disentangle the contribution of aleatoric and epistemic uncertainty.
Additionally, our approach is evaluated on different metrics and compared
against the current state-of-the-art methods.
Related papers
- Uncertainty Decomposition and Error Margin Detection of Homodyned-K Distribution in Quantitative Ultrasound [1.912429179274357]
Homodyned K-distribution (HK-distribution) parameter estimation in quantitative ultrasound (QUS) has been recently addressed using Bayesian Neural Networks (BNNs)
BNNs have been shown to significantly reduce computational time in speckle statistics-based QUS without compromising accuracy and precision.
arXiv Detail & Related papers (2024-09-17T22:16:49Z) - Looking at the posterior: accuracy and uncertainty of neural-network
predictions [0.0]
We show that prediction accuracy depends on both epistemic and aleatoric uncertainty.
We introduce a novel acquisition function that outperforms common uncertainty-based methods.
arXiv Detail & Related papers (2022-11-26T16:13:32Z) - Comparison of Uncertainty Quantification with Deep Learning in Time
Series Regression [7.6146285961466]
In this paper, different uncertainty estimation methods are compared to forecast meteorological time series data.
Results show how each uncertainty estimation method performs on the forecasting task.
arXiv Detail & Related papers (2022-11-11T14:29:13Z) - Reliability-Aware Prediction via Uncertainty Learning for Person Image
Retrieval [51.83967175585896]
UAL aims at providing reliability-aware predictions by considering data uncertainty and model uncertainty simultaneously.
Data uncertainty captures the noise" inherent in the sample, while model uncertainty depicts the model's confidence in the sample's prediction.
arXiv Detail & Related papers (2022-10-24T17:53:20Z) - Uncertainty Quantification for Traffic Forecasting: A Unified Approach [21.556559649467328]
Uncertainty is an essential consideration for time series forecasting tasks.
In this work, we focus on quantifying the uncertainty of traffic forecasting.
We develop Deep S-Temporal Uncertainty Quantification (STUQ), which can estimate both aleatoric and relational uncertainty.
arXiv Detail & Related papers (2022-08-11T15:21:53Z) - Uncertainty estimation of pedestrian future trajectory using Bayesian
approximation [137.00426219455116]
Under dynamic traffic scenarios, planning based on deterministic predictions is not trustworthy.
The authors propose to quantify uncertainty during forecasting using approximation which deterministic approaches fail to capture.
The effect of dropout weights and long-term prediction on future state uncertainty has been studied.
arXiv Detail & Related papers (2022-05-04T04:23:38Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
We show the principled way to measure the uncertainty of predictions for a classifier based on Nadaraya-Watson's nonparametric estimate of the conditional label distribution.
We demonstrate the strong performance of the method in uncertainty estimation tasks on a variety of real-world image datasets.
arXiv Detail & Related papers (2022-02-07T12:30:45Z) - Dense Uncertainty Estimation via an Ensemble-based Conditional Latent
Variable Model [68.34559610536614]
We argue that the aleatoric uncertainty is an inherent attribute of the data and can only be correctly estimated with an unbiased oracle model.
We propose a new sampling and selection strategy at train time to approximate the oracle model for aleatoric uncertainty estimation.
Our results show that our solution achieves both accurate deterministic results and reliable uncertainty estimation.
arXiv Detail & Related papers (2021-11-22T08:54:10Z) - Dense Uncertainty Estimation [62.23555922631451]
In this paper, we investigate neural networks and uncertainty estimation techniques to achieve both accurate deterministic prediction and reliable uncertainty estimation.
We work on two types of uncertainty estimations solutions, namely ensemble based methods and generative model based methods, and explain their pros and cons while using them in fully/semi/weakly-supervised framework.
arXiv Detail & Related papers (2021-10-13T01:23:48Z) - DEUP: Direct Epistemic Uncertainty Prediction [56.087230230128185]
Epistemic uncertainty is part of out-of-sample prediction error due to the lack of knowledge of the learner.
We propose a principled approach for directly estimating epistemic uncertainty by learning to predict generalization error and subtracting an estimate of aleatoric uncertainty.
arXiv Detail & Related papers (2021-02-16T23:50:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.