論文の概要: Multi-Agent Informational Learning Processes
- arxiv url: http://arxiv.org/abs/2006.06870v4
- Date: Thu, 25 Feb 2021 21:43:47 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-22 13:06:18.490255
- Title: Multi-Agent Informational Learning Processes
- Title(参考訳): マルチエージェント情報学習プロセス
- Authors: J.K. Terry, Nathaniel Grammel
- Abstract要約: 本稿では,マルチエージェント強化学習の数学的モデルであるマルチエージェント情報学習プロセッサ"MAILP"モデルを提案する。
このモデルは、エージェントが一定の量の情報に対してポリシーを持っているという考えに基づいており、この情報がどのように反復的に進化し、多くのエージェントを通して伝播するかをモデル化している。
- 参考スコア(独自算出の注目度): 0.571097144710995
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a new mathematical model of multi-agent reinforcement learning,
the Multi-Agent Informational Learning Processor "MAILP" model. The model is
based on the notion that agents have policies for a certain amount of
information, models how this information iteratively evolves and propagates
through many agents. This model is very general, and the only meaningful
assumption made is that learning for individual agents progressively slows over
time.
- Abstract(参考訳): 本稿では,マルチエージェント強化学習の数学的モデルであるマルチエージェント情報学習プロセッサ"MAILP"モデルを提案する。
このモデルは、エージェントが一定の量の情報に対するポリシーを持っているという考えに基づいており、この情報が反復的にどのように進化し、多くのエージェントを通じて伝播するかをモデル化している。
このモデルは非常に一般的であり、唯一の意味のある仮定は、個々のエージェントの学習が徐々に遅くなるということである。
関連論文リスト
- An Interactive Agent Foundation Model [49.77861810045509]
本稿では,AIエージェントを訓練するための新しいマルチタスクエージェントトレーニングパラダイムを用いた対話型エージェント基礎モデルを提案する。
トレーニングパラダイムは、視覚マスク付きオートエンコーダ、言語モデリング、次世代の予測など、多様な事前学習戦略を統一する。
私たちは、ロボティクス、ゲームAI、ヘルスケアという3つの異なる領域でフレームワークのパフォーマンスを実演します。
論文 参考訳(メタデータ) (2024-02-08T18:58:02Z) - MADiff: Offline Multi-agent Learning with Diffusion Models [79.18130544233794]
拡散モデル(DM)は、最近オフライン強化学習を含む様々なシナリオで大きな成功を収めた。
この問題に対処する新しい生成型マルチエージェント学習フレームワークであるMADiffを提案する。
本実験は,マルチエージェント学習タスクにおけるベースラインアルゴリズムと比較して,MADiffの優れた性能を示す。
論文 参考訳(メタデータ) (2023-05-27T02:14:09Z) - Modular Deep Learning [120.36599591042908]
トランスファーラーニングは近年、機械学習の主要なパラダイムとなっている。
負の干渉を伴わずに複数のタスクを専門とするモデルを開発する方法はまだ不明である。
これらの課題に対する有望な解決策として、モジュール型ディープラーニングが登場した。
論文 参考訳(メタデータ) (2023-02-22T18:11:25Z) - Large-scale Multi-Modal Pre-trained Models: A Comprehensive Survey [66.18478838828231]
マルチモーダルな事前訓練型大型モデルは近年ますます注目を集めている。
本稿では, 自然言語処理, コンピュータビジョン, 音声処理における従来の深層・深層・深層・深層・深層・深層・深層・深層・深層・深層・深層・深層・深層・深層・深層・深層・深層・深層・深層・高層・高層・高層・高層・高層・高層・高層・高層・高層・高層・高層・高層・高層・高層・高層・高層・高層・高層・高層・高層・高層・高層・高層・高層・高層・高層・高層・高層・高層・高層・高層・高層・高層・高層・高層・
次に,マルチモーダル・プレトレーニング・モデル(MM-PTM)のタスク定義,課題,メリットを紹介し,データ,目的,ネットワーク,知識強化による事前トレーニングに着目して,MM-PTMについて議論する。
論文 参考訳(メタデータ) (2023-02-20T15:34:03Z) - Mingling Foresight with Imagination: Model-Based Cooperative Multi-Agent
Reinforcement Learning [15.12491397254381]
本稿では,暗黙的なモデルに基づくマルチエージェント強化学習手法を提案する。
この方法では,エージェントは学習した仮想環境と対話し,将来の予測状態に応じて現在の状態値を評価することができる。
論文 参考訳(メタデータ) (2022-04-20T12:16:27Z) - Multi-Model Federated Learning [8.629912408966145]
連合学習を複数の無関係モデルが同時に訓練される環境に拡張する。
全てのクライアントは一度にMモデルのどれかを訓練することができ、サーバはMモデルのモデルを保持します。
時間とともに学習タスクをクライアントに割り当てるための複数のポリシーを提案する。第1の方針は、広く研究されているFedAvgをi.i.dのクライアントにモデルを割り当てることでマルチモデル学習に拡張するものである。
さらに,現在に基づく意思決定を行うマルチモデル設定において,クライアント選択のための2つの新しいポリシーを提案する。
論文 参考訳(メタデータ) (2022-01-07T18:24:23Z) - Paradigms of Computational Agency [0.0]
エージェントベースのモデルは、情報システムの複雑さの増大に対処するための有望なパラダイムとして登場した。
本稿では,エージェントの理解と,エージェントの計算モデルが進化した異質な方法について考察する。
論文 参考訳(メタデータ) (2021-12-10T14:42:49Z) - Multi-Agent Imitation Learning with Copulas [102.27052968901894]
マルチエージェント模倣学習は、観察と行動のマッピングを学習することで、デモからタスクを実行するために複数のエージェントを訓練することを目的としている。
本稿では,確率変数間の依存を捉える強力な統計ツールである copula を用いて,マルチエージェントシステムにおける相関関係と協調関係を明示的にモデル化する。
提案モデルでは,各エージェントの局所的行動パターンと,エージェント間の依存構造のみをフルにキャプチャするコプラ関数を別々に学習することができる。
論文 参考訳(メタデータ) (2021-07-10T03:49:41Z) - Relating by Contrasting: A Data-efficient Framework for Multimodal
Generative Models [86.9292779620645]
生成モデル学習のための対照的なフレームワークを開発し、モダリティ間の共通性だけでなく、「関連」と「関連しない」マルチモーダルデータの区別によってモデルを訓練することができる。
提案手法では, 生成モデルを用いて, 関係のないサンプルから関連サンプルを正確に識別し, ラベルのない多モードデータの利用が可能となる。
論文 参考訳(メタデータ) (2020-07-02T15:08:11Z) - Improved Structural Discovery and Representation Learning of Multi-Agent
Data [5.40729975786985]
本稿では,構造化マルチエージェントデータのロバストな順序付けを行う動的アライメント手法を提案する。
プロリーグからの大量のサッカー追跡データを用いて,このアプローチの価値を実証する。
論文 参考訳(メタデータ) (2019-12-30T22:49:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。