Near-Optimal Algorithms for Gaussians with Huber Contamination: Mean
Estimation and Linear Regression
- URL: http://arxiv.org/abs/2312.01547v1
- Date: Mon, 4 Dec 2023 00:31:16 GMT
- Title: Near-Optimal Algorithms for Gaussians with Huber Contamination: Mean
Estimation and Linear Regression
- Authors: Ilias Diakonikolas, Daniel M. Kane, Ankit Pensia, Thanasis Pittas
- Abstract summary: We design the first sample near- and almost linear-time algorithms with optimal error guarantees.
For robust linear regression, we give the first algorithm with sample complexity $n = tildeO(d/epsilon2)$ and almost linear runtime that approximates the target regressor within $ell$- $O(epsilon)$.
This is the first sample and time algorithm achieving the optimal error guarantee, answering an open question in the literature.
- Score: 44.13655983242414
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the fundamental problems of Gaussian mean estimation and linear
regression with Gaussian covariates in the presence of Huber contamination. Our
main contribution is the design of the first sample near-optimal and almost
linear-time algorithms with optimal error guarantees for both of these
problems. Specifically, for Gaussian robust mean estimation on $\mathbb{R}^d$
with contamination parameter $\epsilon \in (0, \epsilon_0)$ for a small
absolute constant $\epsilon_0$, we give an algorithm with sample complexity $n
= \tilde{O}(d/\epsilon^2)$ and almost linear runtime that approximates the
target mean within $\ell_2$-error $O(\epsilon)$. This improves on prior work
that achieved this error guarantee with polynomially suboptimal sample and time
complexity. For robust linear regression, we give the first algorithm with
sample complexity $n = \tilde{O}(d/\epsilon^2)$ and almost linear runtime that
approximates the target regressor within $\ell_2$-error $O(\epsilon)$. This is
the first polynomial sample and time algorithm achieving the optimal error
guarantee, answering an open question in the literature. At the technical
level, we develop a methodology that yields almost-linear time algorithms for
multi-directional filtering that may be of broader interest.
Related papers
- Robust Sparse Regression with Non-Isotropic Designs [4.964650614497048]
We develop a technique to design efficiently computable estimators for sparse linear regression in the simultaneous presence of two adversaries.
We provide a novel analysis of weighted penalized Huber loss that is suitable for heavy-tailed designs in the presence of two adversaries.
arXiv Detail & Related papers (2024-10-31T13:51:59Z) - Robust Sparse Estimation for Gaussians with Optimal Error under Huber Contamination [42.526664955704746]
We study sparse estimation tasks in Huber's contamination model with a focus on mean estimation, PCA, and linear regression.
For each of these tasks, we give the first sample and computationally efficient robust estimators with optimal error guarantees.
At the technical level, we develop a novel multidimensional filtering method in the sparse regime that may find other applications.
arXiv Detail & Related papers (2024-03-15T15:51:27Z) - Fast Minimization of Expected Logarithmic Loss via Stochastic Dual
Averaging [8.990961435218544]
We propose a first-order algorithm named $B$-sample dual averaging with the logarithmic barrier.
For the Poisson inverse problem, our algorithm attains an $varepsilon$ solution in $smashtildeO(d3/varepsilon2)$ time.
When computing the maximum-likelihood estimate for quantum state tomography, our algorithm yields an $varepsilon$-optimal solution in $smashtildeO(d3/varepsilon2)$ time.
arXiv Detail & Related papers (2023-11-05T03:33:44Z) - Efficiently Learning One-Hidden-Layer ReLU Networks via Schur
Polynomials [50.90125395570797]
We study the problem of PAC learning a linear combination of $k$ ReLU activations under the standard Gaussian distribution on $mathbbRd$ with respect to the square loss.
Our main result is an efficient algorithm for this learning task with sample and computational complexity $(dk/epsilon)O(k)$, whereepsilon>0$ is the target accuracy.
arXiv Detail & Related papers (2023-07-24T14:37:22Z) - Near-Optimal Bounds for Learning Gaussian Halfspaces with Random
Classification Noise [50.64137465792738]
We show that any efficient SQ algorithm for the problem requires sample complexity at least $Omega(d1/2/(maxp, epsilon)2)$.
Our lower bound suggests that this quadratic dependence on $1/epsilon$ is inherent for efficient algorithms.
arXiv Detail & Related papers (2023-07-13T18:59:28Z) - Best Policy Identification in Linear MDPs [70.57916977441262]
We investigate the problem of best identification in discounted linear Markov+Delta Decision in the fixed confidence setting under a generative model.
The lower bound as the solution of an intricate non- optimization program can be used as the starting point to devise such algorithms.
arXiv Detail & Related papers (2022-08-11T04:12:50Z) - Robust Sparse Mean Estimation via Sum of Squares [42.526664955704746]
We study the problem of high-dimensional sparse mean estimation in the presence of an $epsilon$-fraction of adversarial outliers.
Our algorithms follow the Sum-of-Squares based, to algorithms approach.
arXiv Detail & Related papers (2022-06-07T16:49:54Z) - Clustering Mixture Models in Almost-Linear Time via List-Decodable Mean
Estimation [58.24280149662003]
We study the problem of list-decodable mean estimation, where an adversary can corrupt a majority of the dataset.
We develop new algorithms for list-decodable mean estimation, achieving nearly-optimal statistical guarantees.
arXiv Detail & Related papers (2021-06-16T03:34:14Z) - Optimal Robust Linear Regression in Nearly Linear Time [97.11565882347772]
We study the problem of high-dimensional robust linear regression where a learner is given access to $n$ samples from the generative model $Y = langle X,w* rangle + epsilon$
We propose estimators for this problem under two settings: (i) $X$ is L4-L2 hypercontractive, $mathbbE [XXtop]$ has bounded condition number and $epsilon$ has bounded variance and (ii) $X$ is sub-Gaussian with identity second moment and $epsilon$ is
arXiv Detail & Related papers (2020-07-16T06:44:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.