TorsionNet: A Reinforcement Learning Approach to Sequential Conformer
Search
- URL: http://arxiv.org/abs/2006.07078v1
- Date: Fri, 12 Jun 2020 11:03:29 GMT
- Title: TorsionNet: A Reinforcement Learning Approach to Sequential Conformer
Search
- Authors: Tarun Gogineni, Ziping Xu, Exequiel Punzalan, Runxuan Jiang, Joshua
Kammeraad, Ambuj Tewari, Paul Zimmerman
- Abstract summary: We present an efficient sequential conformer search technique based on reinforcement learning under the rigid rotor approximation.
Our experimental results show that torsionNet outperforms the highest scoring chemoinformatics method by 4x on large alkanes, and by several orders of magnitude on the previously unexplored biopolymer lignin.
- Score: 17.2131835813425
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Molecular geometry prediction of flexible molecules, or conformer search, is
a long-standing challenge in computational chemistry. This task is of great
importance for predicting structure-activity relationships for a wide variety
of substances ranging from biomolecules to ubiquitous materials. Substantial
computational resources are invested in Monte Carlo and Molecular Dynamics
methods to generate diverse and representative conformer sets for medium to
large molecules, which are yet intractable to chemoinformatic conformer search
methods. We present TorsionNet, an efficient sequential conformer search
technique based on reinforcement learning under the rigid rotor approximation.
The model is trained via curriculum learning, whose theoretical benefit is
explored in detail, to maximize a novel metric grounded in thermodynamics
called the Gibbs Score. Our experimental results show that TorsionNet
outperforms the highest scoring chemoinformatics method by 4x on large branched
alkanes, and by several orders of magnitude on the previously unexplored
biopolymer lignin, with applications in renewable energy.
Related papers
- Pre-trained Molecular Language Models with Random Functional Group Masking [54.900360309677794]
We propose a SMILES-based underlineem Molecular underlineem Language underlineem Model, which randomly masking SMILES subsequences corresponding to specific molecular atoms.
This technique aims to compel the model to better infer molecular structures and properties, thus enhancing its predictive capabilities.
arXiv Detail & Related papers (2024-11-03T01:56:15Z) - Unsupervised Learning of Molecular Embeddings for Enhanced Clustering
and Emergent Properties for Chemical Compounds [2.6803933204362336]
We introduce various methods to detect and cluster chemical compounds based on their SMILES data.
Our first method, analyzing the graphical structures of chemical compounds using embedding data, employs vector search to meet our threshold value.
We also used natural language description embeddings stored in a vector database with GPT3.5, which outperforms the base model.
arXiv Detail & Related papers (2023-10-25T18:00:24Z) - Towards Predicting Equilibrium Distributions for Molecular Systems with
Deep Learning [60.02391969049972]
We introduce a novel deep learning framework, called Distributional Graphormer (DiG), in an attempt to predict the equilibrium distribution of molecular systems.
DiG employs deep neural networks to transform a simple distribution towards the equilibrium distribution, conditioned on a descriptor of a molecular system.
arXiv Detail & Related papers (2023-06-08T17:12:08Z) - HD-Bind: Encoding of Molecular Structure with Low Precision,
Hyperdimensional Binary Representations [3.3934198248179026]
Hyperdimensional Computing (HDC) is a proposed learning paradigm that is able to leverage low-precision binary vector arithmetic.
We show that HDC-based inference methods are as much as 90 times more efficient than more complex representative machine learning methods.
arXiv Detail & Related papers (2023-03-27T21:21:46Z) - Learning Harmonic Molecular Representations on Riemannian Manifold [18.49126496517951]
Molecular representation learning plays a crucial role in AI-assisted drug discovery research.
We propose a Harmonic Molecular Representation learning framework, which represents a molecule using the Laplace-Beltrami eigenfunctions of its molecular surface.
arXiv Detail & Related papers (2023-03-27T18:02:47Z) - Implicit Geometry and Interaction Embeddings Improve Few-Shot Molecular
Property Prediction [53.06671763877109]
We develop molecular embeddings that encode complex molecular characteristics to improve the performance of few-shot molecular property prediction.
Our approach leverages large amounts of synthetic data, namely the results of molecular docking calculations.
On multiple molecular property prediction benchmarks, training from the embedding space substantially improves Multi-Task, MAML, and Prototypical Network few-shot learning performance.
arXiv Detail & Related papers (2023-02-04T01:32:40Z) - Retrieval-based Controllable Molecule Generation [63.44583084888342]
We propose a new retrieval-based framework for controllable molecule generation.
We use a small set of molecules to steer the pre-trained generative model towards synthesizing molecules that satisfy the given design criteria.
Our approach is agnostic to the choice of generative models and requires no task-specific fine-tuning.
arXiv Detail & Related papers (2022-08-23T17:01:16Z) - Learning Neural Generative Dynamics for Molecular Conformation
Generation [89.03173504444415]
We study how to generate molecule conformations (textiti.e., 3D structures) from a molecular graph.
We propose a novel probabilistic framework to generate valid and diverse conformations given a molecular graph.
arXiv Detail & Related papers (2021-02-20T03:17:58Z) - Few-Shot Graph Learning for Molecular Property Prediction [46.60746023179724]
We propose Meta-MGNN, a novel model for few-shot molecular property prediction.
To exploit unlabeled molecular information, Meta-MGNN further incorporates molecular structure, attribute based self-supervised modules and self-attentive task weights.
Extensive experiments on two public multi-property datasets demonstrate that Meta-MGNN outperforms a variety of state-of-the-art methods.
arXiv Detail & Related papers (2021-02-16T01:55:34Z) - A Systematic Comparison Study on Hyperparameter Optimisation of Graph
Neural Networks for Molecular Property Prediction [8.02401104726362]
Graph neural networks (GNNs) have been proposed for a wide range of graph-related learning tasks.
In recent years there has been an increasing number of GNN systems that were applied to predict molecular properties.
arXiv Detail & Related papers (2021-02-08T15:40:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.