論文の概要: NAS-Bench-NLP: Neural Architecture Search Benchmark for Natural Language
Processing
- arxiv url: http://arxiv.org/abs/2006.07116v1
- Date: Fri, 12 Jun 2020 12:19:06 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-22 02:05:13.702922
- Title: NAS-Bench-NLP: Neural Architecture Search Benchmark for Natural Language
Processing
- Title(参考訳): NAS-Bench-NLP:自然言語処理のためのニューラルネットワーク探索ベンチマーク
- Authors: Nikita Klyuchnikov, Ilya Trofimov, Ekaterina Artemova, Mikhail
Salnikov, Maxim Fedorov, Evgeny Burnaev
- Abstract要約: 我々は自然言語処理(NLP)の中核である言語モデリングタスクを活用することで、コンピュータビジョン領域の外部へ踏み出す。
テキストデータセット上にリカレントニューラルネットワークの検索スペースを提供し、その内部に14kのアーキテクチャをトレーニングしました。
我々は,意味的関連性および言語理解評価のためのデータセットを用いて,訓練されたモデルの内在的および外在的評価を行った。
- 参考スコア(独自算出の注目度): 12.02718579660613
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural Architecture Search (NAS) is a promising and rapidly evolving research
area. Training a large number of neural networks requires an exceptional amount
of computational power, which makes NAS unreachable for those researchers who
have limited or no access to high-performance clusters and supercomputers. A
few benchmarks with precomputed neural architectures performances have been
recently introduced to overcome this problem and ensure more reproducible
experiments. However, these benchmarks are only for the computer vision domain
and, thus, are built from the image datasets and convolution-derived
architectures. In this work, we step outside the computer vision domain by
leveraging the language modeling task, which is the core of natural language
processing (NLP). Our main contribution is as follows: we have provided search
space of recurrent neural networks on the text datasets and trained 14k
architectures within it; we have conducted both intrinsic and extrinsic
evaluation of the trained models using datasets for semantic relatedness and
language understanding evaluation; finally, we have tested several NAS
algorithms to demonstrate how the precomputed results can be utilized. We
believe that our results have high potential of usage for both NAS and NLP
communities.
- Abstract(参考訳): neural architecture search (nas)は有望で急速に進化する研究分野である。
大量のニューラルネットワークをトレーニングするには、非常に多くの計算能力が必要であり、高性能クラスタやスーパーコンピュータにアクセスできない研究者にとってNASは到達不可能である。
この問題を克服し、より再現可能な実験を確実にするために、先述したニューラルネットワークアーキテクチャのパフォーマンスを持ついくつかのベンチマークが最近紹介されている。
しかしながら、これらのベンチマークはコンピュータビジョンドメインのみを対象としており、画像データセットと畳み込み由来のアーキテクチャから構築されている。
本研究では,自然言語処理(NLP)のコアである言語モデリングタスクを活用することにより,コンピュータビジョン領域の外部へ進出する。
我々は、テキストデータセット上の再帰ニューラルネットワークの検索空間を提供し、その内の1万4千のアーキテクチャを訓練しました。我々は、セマンティクス関連性と言語理解評価のためにデータセットを使用して、トレーニングされたモデルの内在的および外在的評価を行い、最後に、事前計算された結果をどのように利用できるかを示すためにいくつかのnasアルゴリズムをテストしました。
我々はNASとNLPのコミュニティでの利用可能性が高いと考えている。
関連論文リスト
- DNA Family: Boosting Weight-Sharing NAS with Block-Wise Supervisions [121.05720140641189]
蒸留型ニューラルアーキテクチャ(DNA)技術を用いたモデル群を開発した。
提案するDNAモデルでは,アルゴリズムを用いてサブサーチ空間にのみアクセス可能な従来の手法とは対照的に,すべてのアーキテクチャ候補を評価できる。
当社のモデルでは,モバイルコンボリューションネットワークと小型ビジョントランスフォーマーにおいて,ImageNet上で78.9%,83.6%の最先端トップ1精度を実現している。
論文 参考訳(メタデータ) (2024-03-02T22:16:47Z) - Efficacy of Neural Prediction-Based Zero-Shot NAS [0.04096453902709291]
ディープラーニングを用いたゼロショットニューラルアーキテクチャ探索(NAS)の新しい手法を提案する。
提案手法では,畳み込みカーネルを符号化した罪のフーリエ和を用いて,評価対象のアーキテクチャに類似した構造を持つ計算フィードフォワードグラフの構築を可能にする。
実験の結果,NAS-Bench-201データセットの相関関係から,グラフ畳み込みネットワークを用いた従来の手法よりも高い収束率を示すことがわかった。
論文 参考訳(メタデータ) (2023-08-31T14:54:06Z) - GeNAS: Neural Architecture Search with Better Generalization [14.92869716323226]
最近のニューラルアーキテクチャサーチ(NAS)アプローチは、対象データに対して優れたネットワークを見つけるために、検証損失または精度に依存している。
そこで本研究では,より一般化した探索型アーキテクチャのためのニューラルアーキテクチャ探索手法について検討する。
論文 参考訳(メタデータ) (2023-05-15T12:44:54Z) - Generalization Properties of NAS under Activation and Skip Connection
Search [66.8386847112332]
ニューラルネットワーク探索(NAS)の一般化特性を統一的枠組みの下で検討する。
我々は, 有限幅政権下でのニューラル・タンジェント・カーネル(NTK)の最小固有値の下(および上)境界を導出する。
トレーニングなしでもNASがトップパフォーマンスアーキテクチャを選択する方法を示す。
論文 参考訳(メタデータ) (2022-09-15T12:11:41Z) - UnrealNAS: Can We Search Neural Architectures with Unreal Data? [84.78460976605425]
ニューラルアーキテクチャサーチ(NAS)はディープニューラルネットワーク(DNN)の自動設計において大きな成功を収めた。
これまでの研究は、NASに地道ラベルを持つことの必要性を分析し、幅広い関心を喚起した。
NASが有効であるためには、実際のデータが必要であるかどうか、さらに疑問を呈する。
論文 参考訳(メタデータ) (2022-05-04T16:30:26Z) - Accelerating Neural Architecture Exploration Across Modalities Using
Genetic Algorithms [5.620334754517149]
多目的アーキテクチャ探索を加速するために, 遺伝的アルゴリズムと軽量に訓練された客観予測器を反復サイクルで組み合わせる方法を示す。
NASの研究はコンピュータビジョンのタスクを中心に行われており、最近になって自然言語処理の急速な発展など他のモダリティも深く研究されている。
論文 参考訳(メタデータ) (2022-02-25T20:01:36Z) - Neural Architecture Search for Dense Prediction Tasks in Computer Vision [74.9839082859151]
ディープラーニングは、ニューラルネットワークアーキテクチャエンジニアリングに対する需要の高まりにつながっている。
ニューラルネットワーク検索(NAS)は、手動ではなく、データ駆動方式でニューラルネットワークアーキテクチャを自動設計することを目的としている。
NASはコンピュータビジョンの幅広い問題に適用されている。
論文 参考訳(メタデータ) (2022-02-15T08:06:50Z) - Generic Neural Architecture Search via Regression [27.78105839644199]
我々は、ジェネリックNAS(GenNAS)と呼ばれる新規で汎用的なニューラルアーキテクチャサーチ(NAS)フレームワークを提案する。
GenNASはタスク固有のラベルを使用せず、代わりに、アーキテクチャ評価のために手動で設計された合成信号基盤のセットにtextitregressionを採用する。
次に,下流タスク固有のラベルを用いた合成信号の組み合わせを最適化するタスクの自動探索を提案する。
論文 参考訳(メタデータ) (2021-08-04T08:21:12Z) - Neural Architecture Search on ImageNet in Four GPU Hours: A
Theoretically Inspired Perspective [88.39981851247727]
トレーニングフリーニューラルアーキテクチャサーチ(TE-NAS)という新しいフレームワークを提案する。
TE-NASは、ニューラルネットワークカーネル(NTK)のスペクトルと入力空間内の線形領域の数を分析することによってアーキテクチャをランク付けする。
1) この2つの測定はニューラルネットワークのトレーサビリティと表現性を示し, (2) ネットワークのテスト精度と強く相関することを示した。
論文 参考訳(メタデータ) (2021-02-23T07:50:44Z) - Hierarchical Neural Architecture Search for Deep Stereo Matching [131.94481111956853]
本稿では, ディープステレオマッチングのための最初のエンドツーエンド階層型NASフレームワークを提案する。
我々のフレームワークは、タスク固有の人間の知識をニューラルアーキテクチャ検索フレームワークに組み込んでいる。
KITTI stereo 2012、2015、Middleburyベンチマークで1位、SceneFlowデータセットで1位にランクインしている。
論文 参考訳(メタデータ) (2020-10-26T11:57:37Z) - Neural Architecture Performance Prediction Using Graph Neural Networks [17.224223176258334]
グラフニューラルネットワーク(GNN)に基づくニューラルネットワーク性能予測のための代理モデルを提案する。
構造不明アーキテクチャのニューラルネットワーク性能予測におけるこの代理モデルの有効性を実証する。
論文 参考訳(メタデータ) (2020-10-19T09:33:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。