論文の概要: GeNAS: Neural Architecture Search with Better Generalization
- arxiv url: http://arxiv.org/abs/2305.08611v2
- Date: Thu, 18 May 2023 08:24:16 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-19 10:47:10.665082
- Title: GeNAS: Neural Architecture Search with Better Generalization
- Title(参考訳): GeNAS: より一般化されたニューラルアーキテクチャ検索
- Authors: Joonhyun Jeong, Joonsang Yu, Geondo Park, Dongyoon Han, YoungJoon Yoo
- Abstract要約: 最近のニューラルアーキテクチャサーチ(NAS)アプローチは、対象データに対して優れたネットワークを見つけるために、検証損失または精度に依存している。
そこで本研究では,より一般化した探索型アーキテクチャのためのニューラルアーキテクチャ探索手法について検討する。
- 参考スコア(独自算出の注目度): 14.92869716323226
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural Architecture Search (NAS) aims to automatically excavate the optimal
network architecture with superior test performance. Recent neural architecture
search (NAS) approaches rely on validation loss or accuracy to find the
superior network for the target data. In this paper, we investigate a new
neural architecture search measure for excavating architectures with better
generalization. We demonstrate that the flatness of the loss surface can be a
promising proxy for predicting the generalization capability of neural network
architectures. We evaluate our proposed method on various search spaces,
showing similar or even better performance compared to the state-of-the-art NAS
methods. Notably, the resultant architecture found by flatness measure
generalizes robustly to various shifts in data distribution (e.g.
ImageNet-V2,-A,-O), as well as various tasks such as object detection and
semantic segmentation. Code is available at https://github.com/clovaai/GeNAS.
- Abstract(参考訳): Neural Architecture Search (NAS)は、最適なネットワークアーキテクチャを優れたテスト性能で自動的に発掘することを目的としている。
最近のneural architecture search(nas)アプローチは、ターゲットデータに対して優れたネットワークを見つけるために検証損失や精度に依存する。
そこで本研究では,より一般化した探索型アーキテクチャのためのニューラルアーキテクチャ探索手法について検討する。
損失面の平坦性はニューラルネットワークアーキテクチャの一般化能力を予測するための有望なプロキシであることを示す。
提案手法を様々な検索空間で評価し,最先端のnas法と同等あるいはそれ以上の性能を示した。
特に、フラットネス測度によって見出される結果的アーキテクチャは、オブジェクト検出やセマンティクスセグメンテーションのような様々なタスクと同様に、データ分散の様々なシフト(例: imagenet-v2,-a,-o)にロバストに一般化する。
コードはhttps://github.com/clovaai/GeNASで入手できる。
関連論文リスト
- DNA Family: Boosting Weight-Sharing NAS with Block-Wise Supervisions [121.05720140641189]
蒸留型ニューラルアーキテクチャ(DNA)技術を用いたモデル群を開発した。
提案するDNAモデルでは,アルゴリズムを用いてサブサーチ空間にのみアクセス可能な従来の手法とは対照的に,すべてのアーキテクチャ候補を評価できる。
当社のモデルでは,モバイルコンボリューションネットワークと小型ビジョントランスフォーマーにおいて,ImageNet上で78.9%,83.6%の最先端トップ1精度を実現している。
論文 参考訳(メタデータ) (2024-03-02T22:16:47Z) - Efficacy of Neural Prediction-Based Zero-Shot NAS [0.04096453902709291]
ディープラーニングを用いたゼロショットニューラルアーキテクチャ探索(NAS)の新しい手法を提案する。
提案手法では,畳み込みカーネルを符号化した罪のフーリエ和を用いて,評価対象のアーキテクチャに類似した構造を持つ計算フィードフォワードグラフの構築を可能にする。
実験の結果,NAS-Bench-201データセットの相関関係から,グラフ畳み込みネットワークを用いた従来の手法よりも高い収束率を示すことがわかった。
論文 参考訳(メタデータ) (2023-08-31T14:54:06Z) - NAS-FCOS: Efficient Search for Object Detection Architectures [113.47766862146389]
簡易なアンカーフリー物体検出器の特徴ピラミッドネットワーク (FPN) と予測ヘッドを探索し, より効率的な物体検出手法を提案する。
慎重に設計された検索空間、検索アルゴリズム、ネットワーク品質を評価するための戦略により、8つのV100 GPUを使用して、4日以内に最高のパフォーマンスの検知アーキテクチャを見つけることができる。
論文 参考訳(メタデータ) (2021-10-24T12:20:04Z) - Generic Neural Architecture Search via Regression [27.78105839644199]
我々は、ジェネリックNAS(GenNAS)と呼ばれる新規で汎用的なニューラルアーキテクチャサーチ(NAS)フレームワークを提案する。
GenNASはタスク固有のラベルを使用せず、代わりに、アーキテクチャ評価のために手動で設計された合成信号基盤のセットにtextitregressionを採用する。
次に,下流タスク固有のラベルを用いた合成信号の組み合わせを最適化するタスクの自動探索を提案する。
論文 参考訳(メタデータ) (2021-08-04T08:21:12Z) - Search to aggregate neighborhood for graph neural network [47.47628113034479]
そこで本研究では,データ固有のGNNアーキテクチャを自動的に設計するためのフレームワークとして,SANE(Search to Aggregate NEighborhood)を提案する。
新規で表現力のある検索空間を設計することにより,従来の強化学習法よりも効率的である微分可能な探索アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-04-14T03:15:19Z) - Weak NAS Predictors Are All You Need [91.11570424233709]
最近の予測器ベースのnasアプローチは、アーキテクチャとパフォーマンスのペアをサンプリングし、プロキシの精度を予測するという2つの重要なステップで問題を解決しようとする。
私たちはこのパラダイムを、アーキテクチャ空間全体をカバーする複雑な予測子から、ハイパフォーマンスなサブスペースへと徐々に進む弱い予測子へとシフトさせます。
NAS-Bench-101 および NAS-Bench-201 で最高の性能のアーキテクチャを見つけるためのサンプルを少なくし、NASNet 検索空間における最先端の ImageNet パフォーマンスを実現します。
論文 参考訳(メタデータ) (2021-02-21T01:58:43Z) - Hierarchical Neural Architecture Search for Deep Stereo Matching [131.94481111956853]
本稿では, ディープステレオマッチングのための最初のエンドツーエンド階層型NASフレームワークを提案する。
我々のフレームワークは、タスク固有の人間の知識をニューラルアーキテクチャ検索フレームワークに組み込んでいる。
KITTI stereo 2012、2015、Middleburyベンチマークで1位、SceneFlowデータセットで1位にランクインしている。
論文 参考訳(メタデータ) (2020-10-26T11:57:37Z) - DC-NAS: Divide-and-Conquer Neural Architecture Search [108.57785531758076]
本稿では,ディープ・ニューラル・アーキテクチャーを効果的かつ効率的に探索するためのディバイド・アンド・コンカ(DC)手法を提案する。
ImageNetデータセットで75.1%の精度を達成しており、これは同じ検索空間を使った最先端の手法よりも高い。
論文 参考訳(メタデータ) (2020-05-29T09:02:16Z) - A Semi-Supervised Assessor of Neural Architectures [157.76189339451565]
我々は、ニューラルネットワークの有意義な表現を見つけるためにオートエンコーダを用いる。
アーキテクチャの性能を予測するために、グラフ畳み込みニューラルネットワークを導入する。
論文 参考訳(メタデータ) (2020-05-14T09:02:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。