論文の概要: Attribute analysis with synthetic dataset for person re-identification
- arxiv url: http://arxiv.org/abs/2006.07139v2
- Date: Wed, 5 Aug 2020 14:41:39 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-22 04:17:00.085919
- Title: Attribute analysis with synthetic dataset for person re-identification
- Title(参考訳): 人物再識別のための合成データセットによる属性分析
- Authors: Suncheng Xiang, Yuzhuo Fu, Guanjie You, Ting Liu
- Abstract要約: 人物の再識別(re-ID)は、公共のセキュリティやビデオ監視などのアプリケーションにおいて重要な役割を果たす。
近年,合成データエンジンの普及に寄与する合成データからの学習は,目覚ましい成果を上げている。
既存の合成データセットは、小さなサイズと多様性の欠如があり、現実世界のシナリオにおける人物のre-IDの開発を妨げる。
- 参考スコア(独自算出の注目度): 15.388939933009668
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Person re-identification (re-ID) plays an important role in applications such
as public security and video surveillance. Recently, learning from synthetic
data, which benefits from the popularity of synthetic data engine, have
achieved remarkable performance. However, existing synthetic datasets are in
small size and lack of diversity, which hinders the development of person re-ID
in real-world scenarios. To address this problem, firstly, we develop a
large-scale synthetic data engine, the salient characteristic of this engine is
controllable. Based on it, we build a large-scale synthetic dataset, which are
diversified and customized from different attributes, such as illumination and
viewpoint. Secondly, we quantitatively analyze the influence of dataset
attributes on re-ID system. To our best knowledge, this is the first attempt to
explicitly dissect person re-ID from the aspect of attribute on synthetic
dataset. Comprehensive experiments help us have a deeper understanding of the
fundamental problems in person re-ID. Our research also provides useful
insights for dataset building and future practical usage.
- Abstract(参考訳): 個人再識別(re-ID)は、公共セキュリティやビデオ監視などのアプリケーションにおいて重要な役割を果たす。
近年,合成データエンジンの普及に寄与する合成データからの学習は,目覚ましい成果を上げている。
しかし、既存の合成データセットは小さなサイズと多様性の欠如があり、現実世界のシナリオにおける人物のre-IDの発生を妨げる。
この問題に対処するため、まず大規模な合成データエンジンを開発し、このエンジンの健全な特性を制御可能である。
それに基づいて,照明や視点など,さまざまな属性から多様化し,カスタマイズした大規模合成データセットを構築する。
次に,データセット属性がリidシステムに与える影響を定量的に解析する。
私たちの知る限りでは、これは合成データセットの属性の側面から人を再識別する最初の試みです。
総合的な実験は、人物のre-IDにおける根本的な問題をより深く理解するのに役立ちます。
本研究は,データセットの構築と今後の活用に有用な知見を提供する。
関連論文リスト
- Diversity-Driven Synthesis: Enhancing Dataset Distillation through Directed Weight Adjustment [39.137060714048175]
多様性の向上は、データセットを合成するための並列化可能であるが孤立したアプローチを改善することができる、と我々は主張する。
本稿では,動的かつ指向的な重み調整技術を用いて合成過程を変調する新しい手法を提案する。
提案手法は,合成データの各バッチが,元のデータセットの大規模かつ多様なサブセットの特徴を反映していることを保証する。
論文 参考訳(メタデータ) (2024-09-26T08:03:19Z) - Best Practices and Lessons Learned on Synthetic Data [83.63271573197026]
AIモデルの成功は、大規模で多様な、高品質なデータセットの可用性に依存している。
合成データは、現実世界のパターンを模倣する人工データを生成することによって、有望なソリューションとして現れてきた。
論文 参考訳(メタデータ) (2024-04-11T06:34:17Z) - Reimagining Synthetic Tabular Data Generation through Data-Centric AI: A
Comprehensive Benchmark [56.8042116967334]
合成データは、機械学習モデルのトレーニングの代替となる。
合成データが現実世界データの複雑なニュアンスを反映することを保証することは、難しい作業です。
本稿では,データ中心型AI技術の統合による合成データ生成プロセスのガイドの可能性について検討する。
論文 参考訳(メタデータ) (2023-10-25T20:32:02Z) - Exploring the Potential of AI-Generated Synthetic Datasets: A Case Study
on Telematics Data with ChatGPT [0.0]
この研究は、OpenAIの強力な言語モデルであるChatGPTを活用して、特にテレマティクス分野における合成データセットの構築と利用に力を入れている。
このデータ作成プロセスを説明するために、合成テレマティクスデータセットの生成に焦点を当てたハンズオンケーススタディが実施されている。
論文 参考訳(メタデータ) (2023-06-23T15:15:13Z) - Beyond Privacy: Navigating the Opportunities and Challenges of Synthetic
Data [91.52783572568214]
合成データは、機械学習の世界において支配的な力となり、データセットを個々のニーズに合わせて調整できる未来を約束する。
合成データのより広範な妥当性と適用のために,コミュニティが克服すべき根本的な課題について論じる。
論文 参考訳(メタデータ) (2023-04-07T16:38:40Z) - Synthetic-to-Real Domain Adaptation for Action Recognition: A Dataset and Baseline Performances [76.34037366117234]
ロボット制御ジェスチャー(RoCoG-v2)と呼ばれる新しいデータセットを導入する。
データセットは7つのジェスチャークラスの実ビデオと合成ビデオの両方で構成されている。
我々は,最先端の行動認識とドメイン適応アルゴリズムを用いて結果を示す。
論文 参考訳(メタデータ) (2023-03-17T23:23:55Z) - TRoVE: Transforming Road Scene Datasets into Photorealistic Virtual
Environments [84.6017003787244]
本研究では、シミュレーションデータセットに存在する困難とドメインギャップに対処する合成データ生成パイプラインを提案する。
既存のデータセットからアノテーションや視覚的手がかりを利用すれば、自動マルチモーダルデータ生成が容易になることを示す。
論文 参考訳(メタデータ) (2022-08-16T20:46:08Z) - Enabling Synthetic Data adoption in regulated domains [1.9512796489908306]
Model-CentricからData-Centricへの転換は、アルゴリズムよりもデータとその品質に重点を置いている。
特に、高度に規制されたシナリオにおける情報のセンシティブな性質を考慮する必要がある。
このようなコンウンドラムをバイパスする巧妙な方法は、生成プロセスから得られたデータであるSynthetic Dataに依存し、実際のデータプロパティを学習する。
論文 参考訳(メタデータ) (2022-04-13T10:53:54Z) - Less is More: Learning from Synthetic Data with Fine-grained Attributes
for Person Re-Identification [16.107661617441327]
人物の再識別(re-ID)は、公共のセキュリティやビデオ監視などのアプリケーションにおいて重要な役割を果たす。
近年、合成データから学ぶことは、学術と公衆の目の両方から注目を集めている。
我々は,微粒な属性分布を持つファインGPRという大規模合成人データセットを構築し,ラベル付けする。
論文 参考訳(メタデータ) (2021-09-22T03:12:32Z) - Unsupervised Domain Adaptive Learning via Synthetic Data for Person
Re-identification [101.1886788396803]
人物再識別(re-ID)は、ビデオ監視に広く応用されているため、ますます注目を集めている。
残念なことに、主流のディープラーニング手法では、モデルをトレーニングするために大量のラベル付きデータが必要です。
本稿では,コンピュータゲーム内で合成されたre-IDサンプルを自動的に生成するデータコレクタを開発し,同時にアノテートするデータラベラを構築した。
論文 参考訳(メタデータ) (2021-09-12T15:51:41Z) - Taking A Closer Look at Synthesis: Fine-grained Attribute Analysis for
Person Re-Identification [15.388939933009668]
人物の再識別(re-ID)は、公共のセキュリティやビデオ監視などのアプリケーションにおいて重要な役割を果たす。
近年,合成データエンジンの普及に寄与する合成データからの学習は,目覚ましい成果を上げている。
この研究は、人物のre-IDにおける根本的な問題をより深く理解するのに役立ち、データセットの構築と将来の実用的な使用法に関する有用な洞察を提供する。
論文 参考訳(メタデータ) (2020-10-15T02:47:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。