論文の概要: TRoVE: Transforming Road Scene Datasets into Photorealistic Virtual
Environments
- arxiv url: http://arxiv.org/abs/2208.07943v1
- Date: Tue, 16 Aug 2022 20:46:08 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-18 12:51:16.292120
- Title: TRoVE: Transforming Road Scene Datasets into Photorealistic Virtual
Environments
- Title(参考訳): TRoVE:道路シーンのデータセットをリアルな仮想環境に変換する
- Authors: Shubham Dokania, Anbumani Subramanian, Manmohan Chandraker, C. V.
Jawahar
- Abstract要約: 本研究では、シミュレーションデータセットに存在する困難とドメインギャップに対処する合成データ生成パイプラインを提案する。
既存のデータセットからアノテーションや視覚的手がかりを利用すれば、自動マルチモーダルデータ生成が容易になることを示す。
- 参考スコア(独自算出の注目度): 84.6017003787244
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: High-quality structured data with rich annotations are critical components in
intelligent vehicle systems dealing with road scenes. However, data curation
and annotation require intensive investments and yield low-diversity scenarios.
The recently growing interest in synthetic data raises questions about the
scope of improvement in such systems and the amount of manual work still
required to produce high volumes and variations of simulated data. This work
proposes a synthetic data generation pipeline that utilizes existing datasets,
like nuScenes, to address the difficulties and domain-gaps present in simulated
datasets. We show that using annotations and visual cues from existing
datasets, we can facilitate automated multi-modal data generation, mimicking
real scene properties with high-fidelity, along with mechanisms to diversify
samples in a physically meaningful way. We demonstrate improvements in mIoU
metrics by presenting qualitative and quantitative experiments with real and
synthetic data for semantic segmentation on the Cityscapes and KITTI-STEP
datasets. All relevant code and data is released on github
(https://github.com/shubham1810/trove_toolkit).
- Abstract(参考訳): リッチアノテーションによる高品質な構造化データは、道路シーンを扱うインテリジェントな車両システムにおいて重要な要素である。
しかし、データキュレーションとアノテーションは集中的な投資を必要とし、低多様性のシナリオを生み出す。
近年、合成データへの関心が高まっており、このようなシステムの改善の範囲と、シミュレーションデータの大量生産に必要な手作業の量に関する疑問が持ち上がっている。
シミュレーションデータセットに存在する困難とドメインギャップに対処するために、nuScenesのような既存のデータセットを利用する合成データ生成パイプラインを提案する。
既存のデータセットからアノテーションや視覚的手がかりを用いることで,高忠実度で実シーン特性を模倣し,物理的に意味のある方法でサンプルを多様化する機構を具体化することで,自動マルチモーダルデータ生成を促進できることを示す。
都市景観とキティステップデータセットにおける意味セグメンテーションのための実データと合成データを用いた質的および定量的実験を行い,miouメトリクスの改善を示す。
すべての関連コードとデータはgithub(https://github.com/shubham1810/trove_toolkit)で公開されている。
関連論文リスト
- Web-Scale Visual Entity Recognition: An LLM-Driven Data Approach [56.55633052479446]
Webスケールのビジュアルエンティティ認識は、クリーンで大規模なトレーニングデータがないため、重大な課題を呈している。
本稿では,ラベル検証,メタデータ生成,合理性説明に多モーダル大言語モデル(LLM)を活用することによって,そのようなデータセットをキュレートする新しい手法を提案する。
実験により、この自動キュレートされたデータに基づいてトレーニングされたモデルは、Webスケールの視覚的エンティティ認識タスクで最先端のパフォーマンスを達成することが示された。
論文 参考訳(メタデータ) (2024-10-31T06:55:24Z) - BEHAVIOR Vision Suite: Customizable Dataset Generation via Simulation [57.40024206484446]
我々は、コンピュータビジョンモデルの体系的評価のために、完全にカスタマイズされた合成データを生成するためのツールと資産のセットであるBEHAVIOR Vision Suite(BVS)を紹介する。
BVSはシーンレベルで多数の調整可能なパラメータをサポートする。
アプリケーションシナリオを3つ紹介する。
論文 参考訳(メタデータ) (2024-05-15T17:57:56Z) - Reimagining Synthetic Tabular Data Generation through Data-Centric AI: A
Comprehensive Benchmark [56.8042116967334]
合成データは、機械学習モデルのトレーニングの代替となる。
合成データが現実世界データの複雑なニュアンスを反映することを保証することは、難しい作業です。
本稿では,データ中心型AI技術の統合による合成データ生成プロセスのガイドの可能性について検討する。
論文 参考訳(メタデータ) (2023-10-25T20:32:02Z) - Exploring the Potential of AI-Generated Synthetic Datasets: A Case Study
on Telematics Data with ChatGPT [0.0]
この研究は、OpenAIの強力な言語モデルであるChatGPTを活用して、特にテレマティクス分野における合成データセットの構築と利用に力を入れている。
このデータ作成プロセスを説明するために、合成テレマティクスデータセットの生成に焦点を当てたハンズオンケーススタディが実施されている。
論文 参考訳(メタデータ) (2023-06-23T15:15:13Z) - infoVerse: A Universal Framework for Dataset Characterization with
Multidimensional Meta-information [68.76707843019886]
infoVerseは、データセットの特徴付けのための普遍的なフレームワークである。
infoVerseは、様々なモデル駆動メタ情報を統合することで、データセットの多次元特性をキャプチャする。
実世界の3つのアプリケーション(データプルーニング、アクティブラーニング、データアノテーション)において、infoVerse空間で選択されたサンプルは、強いベースラインを一貫して上回る。
論文 参考訳(メタデータ) (2023-05-30T18:12:48Z) - A New Benchmark: On the Utility of Synthetic Data with Blender for Bare
Supervised Learning and Downstream Domain Adaptation [42.2398858786125]
コンピュータビジョンにおけるディープラーニングは、大規模ラベル付きトレーニングデータの価格で大きな成功を収めた。
制御不能なデータ収集プロセスは、望ましくない重複が存在する可能性のある非IIDトレーニングおよびテストデータを生成する。
これを回避するために、ドメインランダム化による3Dレンダリングによる合成データを生成する方法がある。
論文 参考訳(メタデータ) (2023-03-16T09:03:52Z) - Scalable Modular Synthetic Data Generation for Advancing Aerial Autonomy [2.9005223064604078]
本稿では,自律飛行に適したスケーラブルなAerial Synthetic Data Augmentation (ASDA) フレームワークを提案する。
ASDAは、シーンとデータ拡張を自動的に実行する2つのスクリプト可能なパイプラインを備えた中央データ収集エンジンを拡張している。
多様なデータセットを自動生成する手法の有効性を実証する。
論文 参考訳(メタデータ) (2022-11-10T04:37:41Z) - MetaGraspNet: A Large-Scale Benchmark Dataset for Scene-Aware
Ambidextrous Bin Picking via Physics-based Metaverse Synthesis [72.85526892440251]
本稿では,物理に基づくメタバース合成により構築した大規模写真リアリスティックビンピックデータセットであるMetaGraspNetを紹介する。
提案データセットは,82種類の記事に対して217kのRGBD画像を含み,オブジェクト検出,アモーダル認識,キーポイント検出,操作順序,および並列ジャウと真空グリップパー用のアンビデクストグリップラベルの完全なアノテーションを備える。
また,2.3k以上の完全アノテートされた高品質なRGBD画像からなる実際のデータセットを5段階の難易度と,異なるオブジェクトおよびレイアウト特性を評価するための見えないオブジェクトセットに分割する。
論文 参考訳(メタデータ) (2022-08-08T08:15:34Z) - Virtual passengers for real car solutions: synthetic datasets [2.1028463367241033]
私たちは3Dシナリオを構築し、可能な限り現実に近いようにセットアップします。
シーンにランダム性を加えるためにパラメータの設定と変更が可能である。
本稿では,自動車環境における合成データ生成のプロセスと概念について述べる。
論文 参考訳(メタデータ) (2022-05-13T10:54:39Z) - Semi-synthesis: A fast way to produce effective datasets for stereo
matching [16.602343511350252]
現実に近いテクスチャレンダリングは、ステレオマッチングのパフォーマンスを高める重要な要素です。
実物に近いテクスチャーで大量のデータを合成する効果的かつ高速な方法である半合成法を提案します。
実際のデータセットのさらなる微調整により、MiddleburyのSOTAパフォーマンスとKITTIおよびETH3Dデータセットの競争結果も達成します。
論文 参考訳(メタデータ) (2021-01-26T14:34:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。