論文の概要: Are we done with ImageNet?
- arxiv url: http://arxiv.org/abs/2006.07159v1
- Date: Fri, 12 Jun 2020 13:17:25 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-22 03:16:52.131968
- Title: Are we done with ImageNet?
- Title(参考訳): ImageNetは終わりましたか?
- Authors: Lucas Beyer and Olivier J. H\'enaff and Alexander Kolesnikov and
Xiaohua Zhai and A\"aron van den Oord
- Abstract要約: 我々は、ImageNetバリデーションセットの人間のアノテーションを収集するための、より堅牢な手順を開発する。
我々は最近提案されたImageNet分類器の精度を再評価し、その精度は元のラベルで報告されたものよりもかなり小さいことがわかった。
オリジナルのImageNetラベルは、もはやこの独立に収集されたセットの最良の予測者ではなく、ビジョンモデルの評価における彼らの有用性が終わりに近づいていることを示している。
- 参考スコア(独自算出の注目度): 86.01120671361844
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Yes, and no. We ask whether recent progress on the ImageNet classification
benchmark continues to represent meaningful generalization, or whether the
community has started to overfit to the idiosyncrasies of its labeling
procedure. We therefore develop a significantly more robust procedure for
collecting human annotations of the ImageNet validation set. Using these new
labels, we reassess the accuracy of recently proposed ImageNet classifiers, and
find their gains to be substantially smaller than those reported on the
original labels. Furthermore, we find the original ImageNet labels to no longer
be the best predictors of this independently-collected set, indicating that
their usefulness in evaluating vision models may be nearing an end.
Nevertheless, we find our annotation procedure to have largely remedied the
errors in the original labels, reinforcing ImageNet as a powerful benchmark for
future research in visual recognition.
- Abstract(参考訳): もちろん、そうでもない。
imagenet分類ベンチマークの最近の進歩が有意義な一般化を表現し続けているのか、それともコミュニティがそのラベル付け手順の特異性に過剰に適合し始めたのかを問う。
そこで我々は,imagenetバリデーションセットのヒューマンアノテーションを収集するための,はるかにロバストな手順を開発した。
これらの新しいラベルを用いて、最近提案されたImageNet分類器の精度を再評価し、元のラベルに報告されているものよりもかなり小さい利得を見出した。
さらに,視覚モデル評価における有用性が終わりに近づいていることを示すため,イメージネットラベルは,この独立集合の最良の予測要因ではなくなった。
それにもかかわらず、私たちのアノテーション手順は元のラベルのエラーを大幅に修正し、将来の視覚認識研究の強力なベンチマークとしてImageNetを強化している。
関連論文リスト
- Exploring Structured Semantic Prior for Multi Label Recognition with
Incomplete Labels [60.675714333081466]
不完全なラベルを持つマルチラベル認識(MLR)は非常に難しい。
最近の研究は、視覚言語モデルであるCLIPにおける画像とラベルの対応を探り、不十分なアノテーションを補うことを目指している。
我々は,MLRにおけるラベル管理の欠如を,構造化されたセマンティクスを導出することにより,不完全なラベルで修復することを提唱する。
論文 参考訳(メタデータ) (2023-03-23T12:39:20Z) - Spurious Features Everywhere -- Large-Scale Detection of Harmful
Spurious Features in ImageNet [36.48282338829549]
本稿では,ImageNetのような大規模データセットにおいて,突発的特徴を体系的に識別するフレームワークを開発する。
我々は,クラス単独で有害な刺激的特徴の存在が,そのクラスの予測を誘発するのに十分であることを示すことによって,その結果を検証する。
我々はSpuFixを単純な緩和法として導入し、これまで同定された有害なスプリアス機能に対するImageNet分類器の依存を減らす。
論文 参考訳(メタデータ) (2022-12-09T14:23:25Z) - Reference-guided Pseudo-Label Generation for Medical Semantic
Segmentation [25.76014072179711]
本稿では,半教師付きセマンティックセグメンテーションのための管理手法を提案する。
少数のラベル付き画像を参照材料として使用し、未ラベル画像中の画素と参照集合内の最適な画素のセマンティクスを一致させる。
我々は,X線解剖学的セグメンテーションにおける標準完全教師付きモデルと同じ性能を達成するが,ラベル付き画像の95%は少ない。
論文 参考訳(メタデータ) (2021-12-01T12:21:24Z) - Semantic-Aware Generation for Self-Supervised Visual Representation
Learning [116.5814634936371]
セマンティック・アウェア・ジェネレーション(SaGe)は、生成した画像に保存される詳細よりも、よりリッチなセマンティクスを促進する。
SaGeは、ターゲットネットワークをビュー特有の特徴で補完することで、集中的なデータ拡張によって引き起こされるセマンティックな劣化を軽減する。
我々は、ImageNet-1K上でSaGeを実行し、近接検定、線形分類、微視的画像認識を含む5つの下流タスクで事前訓練されたモデルを評価する。
論文 参考訳(メタデータ) (2021-11-25T16:46:13Z) - Few-Shot Learning with Part Discovery and Augmentation from Unlabeled
Images [79.34600869202373]
帰納的バイアスは、ラベルなし画像の平坦な集合から学習でき、目に見えるクラスと目に見えないクラスの間で伝達可能な表現としてインスタンス化されることを示す。
具体的には、トランスファー可能な表現を学習するための、新しいパートベース自己教師型表現学習手法を提案する。
我々の手法は印象的な結果をもたらし、それまでの最高の教師なし手法を7.74%、9.24%上回った。
論文 参考訳(メタデータ) (2021-05-25T12:22:11Z) - Re-labeling ImageNet: from Single to Multi-Labels, from Global to
Localized Labels [34.13899937264952]
ImageNetは間違いなく最も人気のある画像分類ベンチマークですが、ラベルノイズのかなりのレベルを持つものでもあります。
近年の研究では、シングルラベルベンチマークと仮定されているにもかかわらず、多くのサンプルが複数のクラスを含んでいることが示されている。
私たちは、単一ラベルアノテーションと効果的に複数のラベル画像の間のミスマッチは、ランダムな作物が適用されるトレーニングセットアップにおいて同様に問題であると主張しています。
論文 参考訳(メタデータ) (2021-01-13T11:55:58Z) - Enhancing Few-Shot Image Classification with Unlabelled Examples [18.03136114355549]
画像分類性能を向上させるために,非ラベルインスタンスを用いたトランスダクティブなメタラーニング手法を開発した。
提案手法は,正規化ニューラルアダプティブ特徴抽出器を組み合わせることで,非ラベルデータを用いたテスト時間分類精度の向上を実現する。
論文 参考訳(メタデータ) (2020-06-17T05:42:47Z) - Object Segmentation Without Labels with Large-Scale Generative Models [43.679717400251924]
教師なしおよび自己教師付き学習の最近の増加は、ラベル付きデータへの依存を劇的に減らした。
大規模な教師なしモデルは、ピクセルレベルも画像レベルのラベル付けも必要とせず、より困難なオブジェクトセグメンテーションタスクを実行することもできる。
近年の非教師付きGANでは,前景/背景画素の区別が可能で,高品質なサリエンシマスクが実現されている。
論文 参考訳(メタデータ) (2020-06-08T23:30:43Z) - StarNet: towards Weakly Supervised Few-Shot Object Detection [87.80771067891418]
本稿では、終端から終端までの識別可能な非パラメトリック星モデル検出と分類ヘッドを特徴とする数ショットモデルであるStarNetを紹介する。
このヘッドを通じて、バックボーンは画像レベルのラベルのみを使用してメタトレーニングされ、これまで目に見えないいくつかのテストタスクのカテゴリを共同でローカライズおよび分類するための優れた機能を生成する。
数発の検知器であるため、StarNetは事前トレーニングや新しいクラス適応のためのバウンディングボックスアノテーションを一切必要としない。
論文 参考訳(メタデータ) (2020-03-15T11:35:28Z) - I Am Going MAD: Maximum Discrepancy Competition for Comparing
Classifiers Adaptively [135.7695909882746]
我々は、MAD(Maximum Discrepancy)コンペティションを命名する。
任意に大きいラベル付き画像のコーパスから小さなテストセットを適応的にサンプリングする。
結果のモデル依存画像集合に人間のラベルを付けると、競合する分類器の相対的な性能が明らかになる。
論文 参考訳(メタデータ) (2020-02-25T03:32:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。