論文の概要: Enhancing Few-Shot Image Classification with Unlabelled Examples
- arxiv url: http://arxiv.org/abs/2006.12245v6
- Date: Thu, 21 Oct 2021 17:59:05 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-19 19:16:55.289157
- Title: Enhancing Few-Shot Image Classification with Unlabelled Examples
- Title(参考訳): 非ラベル例による少数ショット画像分類の強化
- Authors: Peyman Bateni, Jarred Barber, Jan-Willem van de Meent, Frank Wood
- Abstract要約: 画像分類性能を向上させるために,非ラベルインスタンスを用いたトランスダクティブなメタラーニング手法を開発した。
提案手法は,正規化ニューラルアダプティブ特徴抽出器を組み合わせることで,非ラベルデータを用いたテスト時間分類精度の向上を実現する。
- 参考スコア(独自算出の注目度): 18.03136114355549
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We develop a transductive meta-learning method that uses unlabelled instances
to improve few-shot image classification performance. Our approach combines a
regularized Mahalanobis-distance-based soft k-means clustering procedure with a
modified state of the art neural adaptive feature extractor to achieve improved
test-time classification accuracy using unlabelled data. We evaluate our method
on transductive few-shot learning tasks, in which the goal is to jointly
predict labels for query (test) examples given a set of support (training)
examples. We achieve state of the art performance on the Meta-Dataset,
mini-ImageNet and tiered-ImageNet benchmarks. All trained models and code have
been made publicly available at github.com/plai-group/simple-cnaps.
- Abstract(参考訳): 画像分類性能を向上させるために,非ラベルインスタンスを用いたトランスダクティブメタ学習法を開発した。
本手法は,正規化したマハラノビス距離に基づくソフトk平均クラスタリング法と人工神経適応性特徴抽出器の修正状態を組み合わせることで,非ラベルデータを用いたテスト時間分類精度の向上を実現する。
提案手法は,一組のサポート(学習)例からクエリ(テスト)例のラベルを共同で予測することを目的として,トランスダクティブな数ショット学習タスクの評価を行う。
我々はメタデータセット、ミニimagenet、階層型imagenetベンチマークでアートパフォーマンスの状態を実現できる。
全ての訓練されたモデルとコードはgithub.com/plai-group/simple-cnapsで公開されている。
関連論文リスト
- Enhancing Instance-Level Image Classification with Set-Level Labels [12.778150812879034]
設定レベルラベルを活用することで、インスタンスレベルの画像分類を強化する新しい手法を提案する。
自然画像データセットと病理画像データセットの2つのカテゴリについて実験を行った。
本アルゴリズムは,病理画像分類ベンチマークにおいて最強の基準値と比較して,分類精度が13%向上した。
論文 参考訳(メタデータ) (2023-11-09T03:17:03Z) - Two-Step Active Learning for Instance Segmentation with Uncertainty and
Diversity Sampling [20.982992381790034]
本研究では,不確実性に基づくサンプリングと多様性に基づくサンプリングを統合したポストホック能動学習アルゴリズムを提案する。
提案アルゴリズムは単純で実装が容易なだけでなく,様々なデータセットに対して優れた性能を実現する。
論文 参考訳(メタデータ) (2023-09-28T03:40:30Z) - Learning to Annotate Part Segmentation with Gradient Matching [58.100715754135685]
本稿では,事前学習したGANを用いて,高品質な画像を生成することで,半教師付き部分分割タスクに対処することに焦点を当てる。
特に、アノテータ学習を学習から学習までの問題として定式化する。
提案手法は,実画像,生成された画像,さらには解析的に描画された画像を含む,幅広いラベル付き画像からアノテータを学習可能であることを示す。
論文 参考訳(メタデータ) (2022-11-06T01:29:22Z) - Beyond Simple Meta-Learning: Multi-Purpose Models for Multi-Domain,
Active and Continual Few-Shot Learning [41.07029317930986]
低ラベル方式で動作するモデルの分散感応クラスを提案する。
最初の手法であるSimple CNAPSは階層的に正規化されたマハラノビス距離に基づく分類器を用いる。
我々はさらに、このアプローチをトランスダクティブ学習環境に拡張し、トランスダクティブCNAPSを提案する。
論文 参考訳(メタデータ) (2022-01-13T18:59:02Z) - Incremental Learning in Semantic Segmentation from Image Labels [18.404068463921426]
既存のセマンティックセグメンテーションアプローチは印象的な結果を得るが、新しいカテゴリが発見されるにつれてモデルを漸進的に更新することは困難である。
本稿では、安価で広く利用可能な画像レベルのラベルから新しいクラスを分類することを目的とした、Weakly Incremental Learning for Semanticsのための新しいフレームワークを提案する。
擬似ラベルをオフラインで生成する既存のアプローチとは対照的に、画像レベルのラベルで訓練され、セグメンテーションモデルで正規化される補助分類器を使用して、擬似スーパービジョンをオンラインで取得し、モデルを漸進的に更新する。
論文 参考訳(メタデータ) (2021-12-03T12:47:12Z) - Multi-Label Image Classification with Contrastive Learning [57.47567461616912]
コントラスト学習の直接適用は,複数ラベルの場合においてほとんど改善できないことを示す。
完全教師付き環境下でのコントラスト学習を用いたマルチラベル分類のための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2021-07-24T15:00:47Z) - Grafit: Learning fine-grained image representations with coarse labels [114.17782143848315]
本稿では,学習ラベルの提供するものよりも細かな表現を学習する問題に対処する。
粗いラベルと下層の細粒度潜在空間を併用することにより、カテゴリレベルの検索手法の精度を大幅に向上させる。
論文 参考訳(メタデータ) (2020-11-25T19:06:26Z) - Region Comparison Network for Interpretable Few-shot Image
Classification [97.97902360117368]
新しいクラスのモデルをトレーニングするために、ラベル付きサンプルの限られた数だけを効果的に活用するための画像分類が提案されている。
本研究では,領域比較ネットワーク (RCN) と呼ばれる距離学習に基づく手法を提案する。
また,タスクのレベルからカテゴリへの解釈可能性の一般化も提案する。
論文 参考訳(メタデータ) (2020-09-08T07:29:05Z) - Diverse Image Generation via Self-Conditioned GANs [56.91974064348137]
手動でアノテートされたクラスラベルを使わずに、クラス条件付きGANモデルを訓練する。
代わりに、我々のモデルは、識別器の特徴空間におけるクラスタリングから自動的に派生したラベルに条件付きである。
我々のクラスタリングステップは、自動的に多様なモードを発見し、それらをカバーするためにジェネレータを明示的に必要とします。
論文 参考訳(メタデータ) (2020-06-18T17:56:03Z) - Cross-Domain Few-Shot Classification via Learned Feature-Wise
Transformation [109.89213619785676]
各クラスにラベル付き画像がほとんどない新しいカテゴリを識別することを目的としている。
既存のメトリックベースの数ショット分類アルゴリズムは、クエリ画像の特徴埋め込みとラベル付き画像の特徴埋め込みを比較して、カテゴリを予測する。
有望な性能が証明されているが、これらの手法は目に見えない領域に一般化できないことが多い。
論文 参考訳(メタデータ) (2020-01-23T18:55:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。