論文の概要: Dynamic Model Pruning with Feedback
- arxiv url: http://arxiv.org/abs/2006.07253v1
- Date: Fri, 12 Jun 2020 15:07:08 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-22 02:59:56.096705
- Title: Dynamic Model Pruning with Feedback
- Title(参考訳): フィードバックによる動的モデルプルーニング
- Authors: Tao Lin, Sebastian U. Stich, Luis Barba, Daniil Dmitriev, Martin Jaggi
- Abstract要約: 余分なオーバーヘッドを伴わずにスパーストレーニングモデルを生成する新しいモデル圧縮法を提案する。
CIFAR-10 と ImageNet を用いて本手法の評価を行い,得られたスパースモデルが高密度モデルの最先端性能に到達可能であることを示す。
- 参考スコア(独自算出の注目度): 64.019079257231
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep neural networks often have millions of parameters. This can hinder their
deployment to low-end devices, not only due to high memory requirements but
also because of increased latency at inference. We propose a novel model
compression method that generates a sparse trained model without additional
overhead: by allowing (i) dynamic allocation of the sparsity pattern and (ii)
incorporating feedback signal to reactivate prematurely pruned weights we
obtain a performant sparse model in one single training pass (retraining is not
needed, but can further improve the performance). We evaluate our method on
CIFAR-10 and ImageNet, and show that the obtained sparse models can reach the
state-of-the-art performance of dense models. Moreover, their performance
surpasses that of models generated by all previously proposed pruning schemes.
- Abstract(参考訳): ディープニューラルネットワークは、しばしば数百万のパラメータを持つ。
これにより、高いメモリ要求だけでなく、推論時の遅延の増加によって、ローエンドデバイスへのデプロイメントを妨げる可能性がある。
余分なオーバーヘッドを伴わずにスパーストレーニングモデルを生成する新しいモデル圧縮法を提案する。
(i)スパーシティパターンの動的割当及び
2) 早期に刈り取られた重量を再活性化するためにフィードバック信号を組み込むことで, 1回のトレーニングパスで性能スパースモデルが得られる(リトレーニングは不要だが,さらに性能を向上させることができる)。
CIFAR-10 と ImageNet を用いて本手法の評価を行い,得られたスパースモデルが高密度モデルの最先端性能に達することを示す。
さらに、これらの性能は、以前に提案されたすべてのプルーニングスキームによって生成されたモデルを上回る。
関連論文リスト
- SaRA: High-Efficient Diffusion Model Fine-tuning with Progressive Sparse Low-Rank Adaptation [52.6922833948127]
本研究では,事前学習した拡散モデルにおけるパラメータの重要性について検討する。
本稿では,これらの非効率パラメータをフル活用するための新しいモデル微調整法を提案する。
本手法は,下流アプリケーションにおける事前学習モデルの生成能力を向上する。
論文 参考訳(メタデータ) (2024-09-10T16:44:47Z) - Pruning Large Language Models with Semi-Structural Adaptive Sparse Training [17.381160429641316]
適応スパーストレーナー(AST)と呼ばれるリトレーニングによる半構造化スパースモデルのプルーニングパイプラインを提案する。
ASTは、モデルがトレーニングプロセスを通して適応的にマスクを選択することを可能にし、マスキング重みに減衰を施すことにより、密度の高いモデルをスパースモデルに変換する。
本研究は,半構造化されたスパース言語モデルの実現可能性を示し,高度に圧縮されたモデルを実現するための新しい手法を提案する。
論文 参考訳(メタデータ) (2024-07-30T06:33:44Z) - EMR-Merging: Tuning-Free High-Performance Model Merging [55.03509900949149]
Elect, Mask & Rescale-Merging (EMR-Merging) は既存のマージ手法と比較して優れた性能を示した。
EMR-Mergingはチューニング不要なので、データアベイラビリティや追加のトレーニングは必要ありません。
論文 参考訳(メタデータ) (2024-05-23T05:25:45Z) - PELA: Learning Parameter-Efficient Models with Low-Rank Approximation [16.9278983497498]
そこで本研究では,中間学習段階を導入することにより,事前学習モデルのパラメータ効率を向上させる手法を提案する。
これにより、下流の微調整タスクにローランクモデルの直接的かつ効率的な利用が可能になる。
論文 参考訳(メタデータ) (2023-10-16T07:17:33Z) - Sparse Model Soups: A Recipe for Improved Pruning via Model Averaging [24.64264715041198]
Sparse Model Soups (SMS) は,各プルー・リトレインサイクルを前フェーズから平均モデルに開始することでスパースモデルをマージする新しい手法である。
SMSはスパース性を保ち、スパースネットワークの利点を悪用し、モジュール化され、完全に並列化可能であり、IMPのパフォーマンスを大幅に改善する。
論文 参考訳(メタデータ) (2023-06-29T08:49:41Z) - Powerpropagation: A sparsity inducing weight reparameterisation [65.85142037667065]
我々は、本質的にスパースモデルにつながるニューラルネットワークの新しい重みパラメータ化であるPowerpropagationを紹介した。
この方法で訓練されたモデルは同様の性能を示すが、0で明らかに高い密度の分布を持ち、より多くのパラメータを安全に刈り取ることができる。
ここでは、Powerpropagationと従来のウェイトプルーニング技術と、最近の最先端スパース・トゥ・スパースアルゴリズムを組み合わせることで、ImageNetベンチマークで優れたパフォーマンスを示す。
論文 参考訳(メタデータ) (2021-10-01T10:03:57Z) - Sparse Flows: Pruning Continuous-depth Models [107.98191032466544]
生成モデルにおいて,プルーニングによりニューラルネットワークの一般化が向上することを示す。
また、プルーニングは、元のネットワークに比べて最大98%少ないパラメータで、精度を損なうことなく、最小かつ効率的なニューラルODE表現を見出すことを示した。
論文 参考訳(メタデータ) (2021-06-24T01:40:17Z) - Top-KAST: Top-K Always Sparse Training [50.05611544535801]
トレーニングを通して一定間隔を保存するTop-KASTを提案する。
確立したImageNetベンチマークのトレーニングモデルでは,従来の作業と同等かそれ以上に動作可能であることを示す。
ImageNetの結果に加えて、言語モデリングの分野においても、我々のアプローチを実証しています。
論文 参考訳(メタデータ) (2021-06-07T11:13:05Z) - A Gradient Flow Framework For Analyzing Network Pruning [11.247894240593693]
最近のネットワークプルーニング手法は、トレーニングの初期段階におけるプルーニングモデルに焦点を当てている。
モデルパラメータのノルムを通した重要度を統一するために勾配流を用いた一般的なフレームワークを開発する。
我々は,CIFAR-10/CIFAR-100でトレーニングしたVGG-13,MobileNet-V1,ResNet-56のいくつかのモデルについて検証を行った。
論文 参考訳(メタデータ) (2020-09-24T17:37:32Z) - DynamicEmbedding: Extending TensorFlow for Colossal-Scale Applications [0.0]
今日、スパースな特徴を持つディープラーニングモデルの制限の1つは、入力の事前定義された性質に起因している。
結果のモデルは、はるかに大きなスケールで、より良く、効率的に実行可能であることを示す。
論文 参考訳(メタデータ) (2020-04-17T17:43:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。