論文の概要: Pruning Large Language Models with Semi-Structural Adaptive Sparse Training
- arxiv url: http://arxiv.org/abs/2407.20584v2
- Date: Mon, 26 Aug 2024 13:19:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-27 20:50:26.524926
- Title: Pruning Large Language Models with Semi-Structural Adaptive Sparse Training
- Title(参考訳): 半構造適応スパース学習を用いた大規模言語モデルの構築
- Authors: Weiyu Huang, Yuezhou Hu, Guohao Jian, Jun Zhu, Jianfei Chen,
- Abstract要約: 適応スパーストレーナー(AST)と呼ばれるリトレーニングによる半構造化スパースモデルのプルーニングパイプラインを提案する。
ASTは、モデルがトレーニングプロセスを通して適応的にマスクを選択することを可能にし、マスキング重みに減衰を施すことにより、密度の高いモデルをスパースモデルに変換する。
本研究は,半構造化されたスパース言語モデルの実現可能性を示し,高度に圧縮されたモデルを実現するための新しい手法を提案する。
- 参考スコア(独自算出の注目度): 17.381160429641316
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The tremendous success of Large Language Models (LLMs) across various complex tasks relies heavily on their substantial scale, which raises challenges during model deployment due to their large memory consumption. Recently, numerous studies have attempted to compress LLMs using one-shot pruning methods. However, these methods often experience considerable performance degradation on complex language understanding tasks, calling into question the feasibility of pruning in LLMs. To address this issue, we propose a pruning pipeline for semi-structured sparse models via retraining, termed Adaptive Sparse Trainer (AST). Unlike previous one-shot pruning methods, AST incrementally transforms dense models into sparse ones by applying decay to masked weights while allowing the model to adaptively select masks throughout the training process. Furthermore, we observe that using distillation with a dense model as the teacher can prevent the sparse model from falling into local optima and accelerate convergence. In addition, we incorporate extra well-initialized parameters to further enhance model performance with minimal increase in memory footprint. AST can significantly enhance model performance, approaching the level of dense models. When applied to the LLaMA2-7B model, AST reduces the zero-shot accuracy gap between dense and semi-structured sparse models to 1.12% across multiple zero-shot tasks, utilizing less than 0.4% of the pretraining tokens. Our work demonstrates the feasibility of deploying semi-structured sparse large language models and introduces a novel method for achieving highly compressed models when combined with existing quantization techniques.
- Abstract(参考訳): 様々な複雑なタスクにわたる大規模言語モデル(LLM)の驚異的な成功は、その相当な規模に大きく依存しています。
近年, ワンショットプルーニング法を用いてLLMを圧縮する研究が数多く行われている。
しかし、これらの手法は複雑な言語理解タスクにおいてかなりの性能劣化を経験し、LLMにおけるプルーニングの可能性に疑問を投げかける。
この問題に対処するために,適応スパーストレーナー (AST) と呼ばれるリトレーニングによる半構造化スパースモデルのプルーニングパイプラインを提案する。
従来のワンショットプルーニング法とは異なり、ASTは、トレーニングプロセスを通して、モデルを適応的にマスクを選択することを可能にしながら、マスクの重みに減衰を施すことによって、密度の高いモデルをスパースモデルに段階的に変換する。
さらに,教師が高密度モデルを用いて蒸留を行うことで,スパースモデルが局所最適状態に陥るのを防止し,収束を加速できることを示す。
さらに,メモリフットプリントが最小限に抑えられ,モデル性能をさらに向上させるために,高度に初期化パラメータを付加した。
ASTはモデル性能を大幅に向上させ、高密度モデルのレベルに近づくことができる。
LLaMA2-7Bモデルに適用すると、ASTは密集したスパースモデルと半構造化されたスパースモデルのゼロショット精度ギャップを複数のゼロショットタスクで1.12%に減らし、事前訓練されたトークンの0.4%未満を利用する。
本研究は,半構造化されたスパース言語モデルの展開の実現可能性を示すとともに,既存の量子化技術と組み合わせることで,高度に圧縮されたモデルを実現する新しい手法を提案する。
関連論文リスト
- SLiM: One-shot Quantized Sparse Plus Low-rank Approximation of LLMs [2.7624021966289605]
大規模言語モデル(LLM)は、自然言語の理解と生成タスクに革命をもたらした。
LLMは、大きなパラメータサイズのため、メモリ消費が高く、推論時間が遅い。
本稿では,1ショットの量子スパースプラス低ランク近似を用いたLEMの圧縮手法であるSLiMを紹介する。
論文 参考訳(メタデータ) (2024-10-12T18:36:07Z) - Revisiting SMoE Language Models by Evaluating Inefficiencies with Task Specific Expert Pruning [78.72226641279863]
SMOE(Sparse Mixture of Expert)モデルは、言語モデリングにおける高密度モデルに代わるスケーラブルな代替品として登場した。
本研究は,SMoEアーキテクチャの設計に関する意思決定を行うために,タスク固有のモデルプルーニングについて検討する。
適応型タスク対応プルーニング手法 UNCURL を導入し,MoE 層当たりの専門家数をオフラインで学習する手法を提案する。
論文 参考訳(メタデータ) (2024-09-02T22:35:03Z) - SMILE: Zero-Shot Sparse Mixture of Low-Rank Experts Construction From Pre-Trained Foundation Models [85.67096251281191]
我々は、ゼロショットスパースミクチャー(SMILE)と呼ばれるモデル融合に対する革新的なアプローチを提案する。
SMILEは、余分なデータやさらなるトレーニングなしに、ソースモデルをMoEモデルにアップスケーリングできる。
画像分類やテキスト生成タスクなど,さまざまなシナリオに対して,フル微調整とLoRA微調整を用いて広範な実験を行う。
論文 参考訳(メタデータ) (2024-08-19T17:32:15Z) - TRAWL: Tensor Reduced and Approximated Weights for Large Language Models [11.064868044313855]
TRAWL (Tensor Reduced and Approximated Weights for Large Language Models) は、複数の重み行列に対してテンソル分解を適用し、大域的な構造パターンを捉えることでLLMを効果的に分解する手法である。
我々の実験によると、TRAWLは、追加のデータやトレーニング、微調整を必要とせず、ベンチマークデータセットのベースラインモデルよりも最大16%モデル性能を向上させる。
論文 参考訳(メタデータ) (2024-06-25T04:01:32Z) - Parameter-Efficient Sparsity Crafting from Dense to Mixture-of-Experts for Instruction Tuning on General Tasks [5.536630285985836]
パラメータ効率のスペシャリティクラフト (PESC) を導入する。
PESCは、Mix-of-experts (MoE)アーキテクチャを使って、密集したモデルをスパースモデルに加工する。
我々の最良スパースモデルは他のスパースモデルよりも優れ、GP3.5に比べて優れた一般性を示す。
論文 参考訳(メタデータ) (2024-01-05T09:58:09Z) - Retrieval-based Knowledge Transfer: An Effective Approach for Extreme
Large Language Model Compression [64.07696663255155]
大規模事前学習型言語モデル(LLM)は、様々な自然言語処理(NLP)タスクにおいて例外的な性能を示した。
しかし、これらのモデルの巨大なサイズは、現実世界のアプリケーションに展開する上で大きな課題をもたらします。
本稿では,LLMの知識を極めて小規模なモデルに効果的に伝達するRetrieval-based Knowledge Transfer (RetriKT)と呼ばれる新しい圧縮パラダイムを提案する。
論文 参考訳(メタデータ) (2023-10-24T07:58:20Z) - Sheared LLaMA: Accelerating Language Model Pre-training via Structured Pruning [52.29522018586365]
我々は,事前訓練された大規模モデルからより小型のLCMを開発するための効果的な方法として構造化プルーニングについて検討した。
提案手法では,(1)階層,頭部,中間および隠蔽次元をエンド・ツー・エンドに除去することで,より大きなモデルを特定のターゲット形状にプルーニングするターゲット構造化プルーニングと,(2)各トレーニングバッチにおけるサンプルデータの構成を,異なるドメイン間での損失に基づいて動的に更新する動的バッチローディングという2つの重要な手法を用いる。
論文 参考訳(メタデータ) (2023-10-10T15:13:30Z) - Efficient Large Scale Language Modeling with Mixtures of Experts [61.45159383372181]
エキスパート層(MoE)の混合により、条件付き計算による言語モデルの効率的なスケーリングが可能になる。
本稿では, 自己回帰型 MoE 言語モデルが, 広範囲な環境下での高密度モデルと比較して, どのようにスケールするかを示す実験的検討を行った。
論文 参考訳(メタデータ) (2021-12-20T17:05:11Z) - Dynamic Model Pruning with Feedback [64.019079257231]
余分なオーバーヘッドを伴わずにスパーストレーニングモデルを生成する新しいモデル圧縮法を提案する。
CIFAR-10 と ImageNet を用いて本手法の評価を行い,得られたスパースモデルが高密度モデルの最先端性能に到達可能であることを示す。
論文 参考訳(メタデータ) (2020-06-12T15:07:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。