Detangling robustness in high dimensions: composite versus
model-averaged estimation
- URL: http://arxiv.org/abs/2006.07457v1
- Date: Fri, 12 Jun 2020 20:40:15 GMT
- Title: Detangling robustness in high dimensions: composite versus
model-averaged estimation
- Authors: Jing Zhou, Gerda Claeskens, Jelena Bradic
- Abstract summary: Robust methods, though ubiquitous in practice, are yet to be fully understood in the context of regularized estimation and high dimensions.
This paper provides a toolbox to further study robustness in these settings and focuses on prediction.
- Score: 11.658462692891355
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Robust methods, though ubiquitous in practice, are yet to be fully understood
in the context of regularized estimation and high dimensions. Even simple
questions become challenging very quickly. For example, classical statistical
theory identifies equivalence between model-averaged and composite quantile
estimation. However, little to nothing is known about such equivalence between
methods that encourage sparsity. This paper provides a toolbox to further study
robustness in these settings and focuses on prediction. In particular, we study
optimally weighted model-averaged as well as composite $l_1$-regularized
estimation. Optimal weights are determined by minimizing the asymptotic mean
squared error. This approach incorporates the effects of regularization,
without the assumption of perfect selection, as is often used in practice. Such
weights are then optimal for prediction quality. Through an extensive
simulation study, we show that no single method systematically outperforms
others. We find, however, that model-averaged and composite quantile estimators
often outperform least-squares methods, even in the case of Gaussian model
noise. Real data application witnesses the method's practical use through the
reconstruction of compressed audio signals.
Related papers
- Stabilizing Subject Transfer in EEG Classification with Divergence
Estimation [17.924276728038304]
We propose several graphical models to describe an EEG classification task.
We identify statistical relationships that should hold true in an idealized training scenario.
We design regularization penalties to enforce these relationships in two stages.
arXiv Detail & Related papers (2023-10-12T23:06:52Z) - Learning to Estimate Without Bias [57.82628598276623]
Gauss theorem states that the weighted least squares estimator is a linear minimum variance unbiased estimation (MVUE) in linear models.
In this paper, we take a first step towards extending this result to non linear settings via deep learning with bias constraints.
A second motivation to BCE is in applications where multiple estimates of the same unknown are averaged for improved performance.
arXiv Detail & Related papers (2021-10-24T10:23:51Z) - Network Estimation by Mixing: Adaptivity and More [2.3478438171452014]
We propose a mixing strategy that leverages available arbitrary models to improve their individual performances.
The proposed method is computationally efficient and almost tuning-free.
We show that the proposed method performs equally well as the oracle estimate when the true model is included as individual candidates.
arXiv Detail & Related papers (2021-06-05T05:17:04Z) - Scalable Personalised Item Ranking through Parametric Density Estimation [53.44830012414444]
Learning from implicit feedback is challenging because of the difficult nature of the one-class problem.
Most conventional methods use a pairwise ranking approach and negative samplers to cope with the one-class problem.
We propose a learning-to-rank approach, which achieves convergence speed comparable to the pointwise counterpart.
arXiv Detail & Related papers (2021-05-11T03:38:16Z) - A bandit-learning approach to multifidelity approximation [7.960229223744695]
Multifidelity approximation is an important technique in scientific computation and simulation.
We introduce a bandit-learning approach for leveraging data of varying fidelities to achieve precise estimates.
arXiv Detail & Related papers (2021-03-29T05:29:35Z) - Density Fixing: Simple yet Effective Regularization Method based on the
Class Prior [2.3859169601259347]
We propose a framework of regularization methods, called density-fixing, that can be used commonly for supervised and semi-supervised learning.
Our proposed regularization method improves the generalization performance by forcing the model to approximate the class's prior distribution or the frequency of occurrence.
arXiv Detail & Related papers (2020-07-08T04:58:22Z) - Good Classifiers are Abundant in the Interpolating Regime [64.72044662855612]
We develop a methodology to compute precisely the full distribution of test errors among interpolating classifiers.
We find that test errors tend to concentrate around a small typical value $varepsilon*$, which deviates substantially from the test error of worst-case interpolating model.
Our results show that the usual style of analysis in statistical learning theory may not be fine-grained enough to capture the good generalization performance observed in practice.
arXiv Detail & Related papers (2020-06-22T21:12:31Z) - Instability, Computational Efficiency and Statistical Accuracy [101.32305022521024]
We develop a framework that yields statistical accuracy based on interplay between the deterministic convergence rate of the algorithm at the population level, and its degree of (instability) when applied to an empirical object based on $n$ samples.
We provide applications of our general results to several concrete classes of models, including Gaussian mixture estimation, non-linear regression models, and informative non-response models.
arXiv Detail & Related papers (2020-05-22T22:30:52Z) - Efficient Ensemble Model Generation for Uncertainty Estimation with
Bayesian Approximation in Segmentation [74.06904875527556]
We propose a generic and efficient segmentation framework to construct ensemble segmentation models.
In the proposed method, ensemble models can be efficiently generated by using the layer selection method.
We also devise a new pixel-wise uncertainty loss, which improves the predictive performance.
arXiv Detail & Related papers (2020-05-21T16:08:38Z) - Amortized Bayesian model comparison with evidential deep learning [0.12314765641075436]
We propose a novel method for performing Bayesian model comparison using specialized deep learning architectures.
Our method is purely simulation-based and circumvents the step of explicitly fitting all alternative models under consideration to each observed dataset.
We show that our method achieves excellent results in terms of accuracy, calibration, and efficiency across the examples considered in this work.
arXiv Detail & Related papers (2020-04-22T15:15:46Z) - Machine learning for causal inference: on the use of cross-fit
estimators [77.34726150561087]
Doubly-robust cross-fit estimators have been proposed to yield better statistical properties.
We conducted a simulation study to assess the performance of several estimators for the average causal effect (ACE)
When used with machine learning, the doubly-robust cross-fit estimators substantially outperformed all of the other estimators in terms of bias, variance, and confidence interval coverage.
arXiv Detail & Related papers (2020-04-21T23:09:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.