Projected Statistical Methods for Distributional Data on the Real Line
with the Wasserstein Metric
- URL: http://arxiv.org/abs/2101.09039v1
- Date: Fri, 22 Jan 2021 10:24:49 GMT
- Title: Projected Statistical Methods for Distributional Data on the Real Line
with the Wasserstein Metric
- Authors: Matteo Pegoraro and Mario Beraha
- Abstract summary: We present a novel class of projected methods, to perform statistical analysis on a data set of probability distributions on the real line.
We focus in particular on Principal Component Analysis (PCA) and regression.
Several theoretical properties of the models are investigated and consistency is proven.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a novel class of projected methods, to perform statistical
analysis on a data set of probability distributions on the real line, with the
2-Wasserstein metric. We focus in particular on Principal Component Analysis
(PCA) and regression. To define these models, we exploit a representation of
the Wasserstein space closely related to its weak Riemannian structure, by
mapping the data to a suitable linear space and using a metric projection
operator to constrain the results in the Wasserstein space. By carefully
choosing the tangent point, we are able to derive fast empirical methods,
exploiting a constrained B-spline approximation. As a byproduct of our
approach, we are also able to derive faster routines for previous work on PCA
for distributions. By means of simulation studies, we compare our approaches to
previously proposed methods, showing that our projected PCA has similar
performance for a fraction of the computational cost and that the projected
regression is extremely flexible even under misspecification. Several
theoretical properties of the models are investigated and asymptotic
consistency is proven. Two real world applications to Covid-19 mortality in the
US and wind speed forecasting are discussed.
Related papers
- Distributionally Robust Optimization as a Scalable Framework to Characterize Extreme Value Distributions [22.765095010254118]
The goal of this paper is to develop distributionally robust optimization (DRO) estimators, specifically for multidimensional Extreme Value Theory (EVT) statistics.
In order to mitigate over-conservative estimates while enhancing out-of-sample performance, we study DRO estimators informed by semi-parametric max-stable constraints in the space of point processes.
Both approaches are validated using synthetically generated data, recovering prescribed characteristics, and verifying the efficacy of the proposed techniques.
arXiv Detail & Related papers (2024-07-31T19:45:27Z) - Bayesian Nonparametrics Meets Data-Driven Distributionally Robust Optimization [29.24821214671497]
Training machine learning and statistical models often involve optimizing a data-driven risk criterion.
We propose a novel robust criterion by combining insights from Bayesian nonparametric (i.e., Dirichlet process) theory and a recent decision-theoretic model of smooth ambiguity-averse preferences.
For practical implementation, we propose and study tractable approximations of the criterion based on well-known Dirichlet process representations.
arXiv Detail & Related papers (2024-01-28T21:19:15Z) - Statistical Efficiency of Score Matching: The View from Isoperimetry [96.65637602827942]
We show a tight connection between statistical efficiency of score matching and the isoperimetric properties of the distribution being estimated.
We formalize these results both in the sample regime and in the finite regime.
arXiv Detail & Related papers (2022-10-03T06:09:01Z) - Sparse high-dimensional linear regression with a partitioned empirical
Bayes ECM algorithm [62.997667081978825]
We propose a computationally efficient and powerful Bayesian approach for sparse high-dimensional linear regression.
Minimal prior assumptions on the parameters are used through the use of plug-in empirical Bayes estimates.
The proposed approach is implemented in the R package probe.
arXiv Detail & Related papers (2022-09-16T19:15:50Z) - Strong posterior contraction rates via Wasserstein dynamics [8.479040075763892]
In Bayesian statistics, posterior contraction rates (PCRs) quantify the speed at which the posterior distribution concentrates on arbitrarily small neighborhoods of a true model.
We develop a new approach to PCRs, with respect to strong norm distances on parameter spaces of functions.
arXiv Detail & Related papers (2022-03-21T06:53:35Z) - Efficient CDF Approximations for Normalizing Flows [64.60846767084877]
We build upon the diffeomorphic properties of normalizing flows to estimate the cumulative distribution function (CDF) over a closed region.
Our experiments on popular flow architectures and UCI datasets show a marked improvement in sample efficiency as compared to traditional estimators.
arXiv Detail & Related papers (2022-02-23T06:11:49Z) - Latent Space Model for Higher-order Networks and Generalized Tensor
Decomposition [18.07071669486882]
We introduce a unified framework, formulated as general latent space models, to study complex higher-order network interactions.
We formulate the relationship between the latent positions and the observed data via a generalized multilinear kernel as the link function.
We demonstrate the effectiveness of our method on synthetic data.
arXiv Detail & Related papers (2021-06-30T13:11:17Z) - GELATO: Geometrically Enriched Latent Model for Offline Reinforcement
Learning [54.291331971813364]
offline reinforcement learning approaches can be divided into proximal and uncertainty-aware methods.
In this work, we demonstrate the benefit of combining the two in a latent variational model.
Our proposed metrics measure both the quality of out of distribution samples as well as the discrepancy of examples in the data.
arXiv Detail & Related papers (2021-02-22T19:42:40Z) - On Projection Robust Optimal Transport: Sample Complexity and Model
Misspecification [101.0377583883137]
Projection robust (PR) OT seeks to maximize the OT cost between two measures by choosing a $k$-dimensional subspace onto which they can be projected.
Our first contribution is to establish several fundamental statistical properties of PR Wasserstein distances.
Next, we propose the integral PR Wasserstein (IPRW) distance as an alternative to the PRW distance, by averaging rather than optimizing on subspaces.
arXiv Detail & Related papers (2020-06-22T14:35:33Z) - Projection Robust Wasserstein Distance and Riemannian Optimization [107.93250306339694]
We show that projection robustly solidstein (PRW) is a robust variant of Wasserstein projection (WPP)
This paper provides a first step into the computation of the PRW distance and provides the links between their theory and experiments on and real data.
arXiv Detail & Related papers (2020-06-12T20:40:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.