論文の概要: Equivariant Neural Rendering
- arxiv url: http://arxiv.org/abs/2006.07630v2
- Date: Mon, 21 Dec 2020 11:28:31 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-21 20:34:09.549274
- Title: Equivariant Neural Rendering
- Title(参考訳): 等価ニューラルレンダリング
- Authors: Emilien Dupont, Miguel Angel Bautista, Alex Colburn, Aditya Sankar,
Carlos Guestrin, Josh Susskind, Qi Shan
- Abstract要約: 本稿では,3次元の監督なしに画像から直接ニューラルシーン表現を学習するためのフレームワークを提案する。
我々の重要な洞察は、学習された表現が本物の3Dシーンのように変換されることを保証することで、3D構造を課すことである。
私たちの定式化によって、推論に数分を要するモデルに匹敵する結果を得ながら、リアルタイムでシーンを推測および描画することが可能になります。
- 参考スコア(独自算出の注目度): 22.95150913645939
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a framework for learning neural scene representations directly
from images, without 3D supervision. Our key insight is that 3D structure can
be imposed by ensuring that the learned representation transforms like a real
3D scene. Specifically, we introduce a loss which enforces equivariance of the
scene representation with respect to 3D transformations. Our formulation allows
us to infer and render scenes in real time while achieving comparable results
to models requiring minutes for inference. In addition, we introduce two
challenging new datasets for scene representation and neural rendering,
including scenes with complex lighting and backgrounds. Through experiments, we
show that our model achieves compelling results on these datasets as well as on
standard ShapeNet benchmarks.
- Abstract(参考訳): 本稿では,3次元の監督なしに画像から直接ニューラルシーン表現を学習するためのフレームワークを提案する。
我々の重要な洞察は、学習された表現が本物の3Dシーンのように変換されることを保証することで、3D構造を課すことである。
具体的には、3次元変換に対するシーン表現の等価性を強制する損失を導入する。
私たちの定式化により、シーンをリアルタイムで推論し、推論に数分を要するモデルと同等の結果を得ることができます。
さらに,シーン表現とニューラルネットワークのレンダリングのために,複雑な照明や背景のシーンを含む2つの難解なデータセットを導入する。
実験により,これらのデータセットと標準のShapeNetベンチマークで有意な結果が得られた。
関連論文リスト
- DistillNeRF: Perceiving 3D Scenes from Single-Glance Images by Distilling Neural Fields and Foundation Model Features [65.8738034806085]
DistillNeRFは、自動運転における3D環境を理解するための自己教師型学習フレームワークである。
スパースでシングルフレームのマルチビューカメラ入力からリッチなニューラルシーン表現を予測する。
RGB、奥行き、特徴画像を再構成するために、異なるレンダリングで自己教師される。
論文 参考訳(メタデータ) (2024-06-17T21:15:13Z) - Denoising Diffusion via Image-Based Rendering [54.20828696348574]
実世界の3Dシーンの高速かつ詳細な再構築と生成を可能にする最初の拡散モデルを提案する。
まず、大きな3Dシーンを効率よく正確に表現できる新しいニューラルシーン表現であるIBプレーンを導入する。
第二に,2次元画像のみを用いて,この新たな3次元シーン表現の事前学習を行うためのデノイング拡散フレームワークを提案する。
論文 参考訳(メタデータ) (2024-02-05T19:00:45Z) - Differentiable Blocks World: Qualitative 3D Decomposition by Rendering
Primitives [70.32817882783608]
本稿では,3次元プリミティブを用いて,シンプルでコンパクトで動作可能な3次元世界表現を実現する手法を提案する。
既存の3次元入力データに依存するプリミティブ分解法とは異なり,本手法は画像を直接操作する。
得られたテクスチャ化されたプリミティブは入力画像を忠実に再構成し、視覚的な3Dポイントを正確にモデル化する。
論文 参考訳(メタデータ) (2023-07-11T17:58:31Z) - 3inGAN: Learning a 3D Generative Model from Images of a Self-similar
Scene [34.2144933185175]
3inGANは、単一の自己相似3Dシーンの2D画像から訓練された無条件3D生成モデルである。
実地および合成源から得られた,様々なスケールと複雑さの半確率的な場面での結果を示す。
論文 参考訳(メタデータ) (2022-11-27T18:03:21Z) - Neural Groundplans: Persistent Neural Scene Representations from a
Single Image [90.04272671464238]
本稿では,シーンの2次元画像観察を永続的な3次元シーン表現にマッピングする手法を提案する。
本稿では,永続的でメモリ効率のよいシーン表現として,条件付きニューラルグラウンドプランを提案する。
論文 参考訳(メタデータ) (2022-07-22T17:41:24Z) - 3DP3: 3D Scene Perception via Probabilistic Programming [28.491817202574932]
3DP3は、オブジェクト、シーン、イメージの構造化生成モデルで推論を使用する逆グラフィックのためのフレームワークである。
その結果,3DP3は深層学習ベースラインよりも実画像から6DoFオブジェクトのポーズ推定の方が精度が高いことがわかった。
論文 参考訳(メタデータ) (2021-10-30T19:10:34Z) - Light Field Networks: Neural Scene Representations with
Single-Evaluation Rendering [60.02806355570514]
2次元観察から3Dシーンの表現を推定することは、コンピュータグラフィックス、コンピュータビジョン、人工知能の基本的な問題である。
そこで我々は,360度4次元光場における基礎となる3次元シーンの形状と外観の両面を表現した新しいニューラルシーン表現,光場ネットワーク(LFN)を提案する。
LFNからレイをレンダリングするには*single*ネットワークの評価しか必要としない。
論文 参考訳(メタデータ) (2021-06-04T17:54:49Z) - Weakly Supervised Learning of Multi-Object 3D Scene Decompositions Using
Deep Shape Priors [69.02332607843569]
PriSMONetは、単一画像から多目的3Dシーンの分解と表現を学習するための新しいアプローチである。
リカレントエンコーダは、入力されたRGB画像から、各オブジェクトの3D形状、ポーズ、テクスチャの潜時表現を回帰する。
我々は,3次元シーンレイアウトの推測におけるモデルの精度を評価し,その生成能力を実証し,実画像への一般化を評価し,学習した表現の利点を指摘する。
論文 参考訳(メタデータ) (2020-10-08T14:49:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。