論文の概要: Auditing Differentially Private Machine Learning: How Private is Private
SGD?
- arxiv url: http://arxiv.org/abs/2006.07709v1
- Date: Sat, 13 Jun 2020 20:00:18 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-21 21:36:00.079613
- Title: Auditing Differentially Private Machine Learning: How Private is Private
SGD?
- Title(参考訳): 異なるプライベートマシンラーニングの監査 - プライベートSGDとは何か?
- Authors: Matthew Jagielski and Jonathan Ullman and Alina Oprea
- Abstract要約: 我々は、差分的プライベートSGDが、最先端の分析によって保証されているものよりも、実際に優れたプライバシーを提供するかどうかを調査する。
われわれは、新しいデータ中毒攻撃を通じて、現実的なプライバシー攻撃に対応している。
- 参考スコア(独自算出の注目度): 16.812900569416062
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate whether Differentially Private SGD offers better privacy in
practice than what is guaranteed by its state-of-the-art analysis. We do so via
novel data poisoning attacks, which we show correspond to realistic privacy
attacks. While previous work (Ma et al., arXiv 2019) proposed this connection
between differential privacy and data poisoning as a defense against data
poisoning, our use as a tool for understanding the privacy of a specific
mechanism is new. More generally, our work takes a quantitative, empirical
approach to understanding the privacy afforded by specific implementations of
differentially private algorithms that we believe has the potential to
complement and influence analytical work on differential privacy.
- Abstract(参考訳): 我々は、差分プライベートSGDが、最先端の分析によって保証されているものよりも、実際に優れたプライバシーを提供するかどうかを検討する。
われわれは、新しいデータ中毒攻撃を通じて、現実的なプライバシー攻撃に対応している。
以前の研究(Ma et al., arXiv 2019)では、データ中毒に対する防御手段として、差分プライバシーとデータ中毒の関連性を提案していましたが、特定のメカニズムのプライバシーを理解するツールとしての使用は新しいものです。
より一般的に、我々の研究は、微分プライベートアルゴリズムの特定の実装によって得られるプライバシーを理解するための定量的かつ実証的なアプローチを取ります。
関連論文リスト
- Differential Privacy Overview and Fundamental Techniques [63.0409690498569]
この章は、"Differential Privacy in Artificial Intelligence: From Theory to Practice"という本の一部である。
まず、データのプライバシ保護のためのさまざまな試みについて説明し、その失敗の場所と理由を強調した。
次に、プライバシ保護データ分析の領域を構成する重要なアクター、タスク、スコープを定義する。
論文 参考訳(メタデータ) (2024-11-07T13:52:11Z) - Masked Differential Privacy [64.32494202656801]
本稿では,差分プライバシーを適用した機密領域を制御できる「マスク型差分プライバシー(DP)」という効果的なアプローチを提案する。
提案手法はデータに基づいて選択的に動作し,DPアプリケーションや差分プライバシーをデータサンプル内の他のプライバシー技術と組み合わせることなく,非感性時間領域を定義できる。
論文 参考訳(メタデータ) (2024-10-22T15:22:53Z) - A Statistical Viewpoint on Differential Privacy: Hypothesis Testing, Representation and Blackwell's Theorem [30.365274034429508]
我々は、差分プライバシーはテクストプア統計概念とみなすことができると論じる。
$f$-differential privacyは、データ分析と機械学習のプライバシー境界を分析するための統合フレームワークである。
論文 参考訳(メタデータ) (2024-09-14T23:47:22Z) - Confounding Privacy and Inverse Composition [32.85314813605347]
差分プライバシーでは、センシティブな情報がデータセットに含まれ、Pufferfishのプライバシでは、センシティブな情報がデータの配布を決定する。
我々は、差分プライバシーとPufferfishプライバシーの両方を一般化する新しいプライバシー概念(epsilon, delta$)を導入する。
論文 参考訳(メタデータ) (2024-08-21T21:45:13Z) - Models Matter: Setting Accurate Privacy Expectations for Local and Central Differential Privacy [14.40391109414476]
局所モデルと中心モデルにおける差分プライバシーの新たな説明を設計・評価する。
我々は、プライバシー栄養ラベルのスタイルにおける結果に焦点を当てた説明が、正確なプライバシー期待を設定するための有望なアプローチであることに気付きました。
論文 参考訳(メタデータ) (2024-08-16T01:21:57Z) - Adaptive Privacy Composition for Accuracy-first Mechanisms [55.53725113597539]
ノイズ低減機構はますます正確な答えを生み出す。
アナリストは、公表された最も騒々しい、あるいは最も正確な回答のプライバシー費用のみを支払う。
ポスト前のプライベートメカニズムがどのように構成されるかは、まだ研究されていない。
我々は、分析者が微分プライベートとポストプライベートのメカニズムを適応的に切り替えることのできるプライバシーフィルタを開発した。
論文 参考訳(メタデータ) (2023-06-24T00:33:34Z) - Algorithms with More Granular Differential Privacy Guarantees [65.3684804101664]
我々は、属性ごとのプライバシー保証を定量化できる部分微分プライバシー(DP)について検討する。
本研究では,複数の基本データ分析および学習タスクについて検討し,属性ごとのプライバシパラメータが個人全体のプライバシーパラメータよりも小さい設計アルゴリズムについて検討する。
論文 参考訳(メタデータ) (2022-09-08T22:43:50Z) - Smooth Anonymity for Sparse Graphs [69.1048938123063]
しかし、スパースデータセットを共有するという点では、差分プライバシーがプライバシのゴールドスタンダードとして浮上している。
本研究では、スムーズな$k$匿名性(スムーズな$k$匿名性)と、スムーズな$k$匿名性(スムーズな$k$匿名性)を提供する単純な大規模アルゴリズムを設計する。
論文 参考訳(メタデータ) (2022-07-13T17:09:25Z) - Assessing Differentially Private Variational Autoencoders under
Membership Inference [26.480694390462617]
差分プライベートな変分オートエンコーダのプライバシーと精度のトレードオフを定量化し比較する。
変分オートエンコーダのプライバシーと精度のトレードオフを良好に観察することはめったになく,LCPがCDPを上回った事例を特定する。
論文 参考訳(メタデータ) (2022-04-16T21:53:09Z) - "I need a better description'': An Investigation Into User Expectations
For Differential Privacy [31.352325485393074]
差分プライバシーに関連するユーザのプライバシ期待について検討する。
ユーザが関心を持っているのは、差分プライバシーが保護する情報漏洩の種類だ。
差分プライバシを記述する方法が,ユーザプライバシの期待を必然的に設定していることが分かりました。
論文 参考訳(メタデータ) (2021-10-13T02:36:37Z) - Private Reinforcement Learning with PAC and Regret Guarantees [69.4202374491817]
エピソード強化学習(RL)のためのプライバシー保護探索ポリシーを設計する。
まず、共同微分プライバシー(JDP)の概念を用いた有意義なプライバシー定式化を提供する。
そこで我々は,強いPACと後悔境界を同時に達成し,JDP保証を享受する,プライベートな楽観主義に基づく学習アルゴリズムを開発した。
論文 参考訳(メタデータ) (2020-09-18T20:18:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。