論文の概要: Domain Adaptation and Image Classification via Deep Conditional
Adaptation Network
- arxiv url: http://arxiv.org/abs/2006.07776v2
- Date: Tue, 3 May 2022 15:10:20 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-21 13:05:58.112194
- Title: Domain Adaptation and Image Classification via Deep Conditional
Adaptation Network
- Title(参考訳): ディープ条件適応ネットワークによるドメイン適応と画像分類
- Authors: Pengfei Ge, Chuan-Xian Ren, Dao-Qing Dai, Hong Yan
- Abstract要約: 教師なしドメイン適応は、ソースドメインでトレーニングされた教師付きモデルをラベルなしのターゲットドメインに一般化することを目的としている。
特徴空間のマージ分布アライメントは、ソースとターゲットのドメイン間のドメインの差を減らすために広く用いられている。
本稿では,特徴空間の条件分布アライメントに基づく非教師なし領域適応手法であるDeep Conditional Adaptation Network (DCAN)を提案する。
- 参考スコア(独自算出の注目度): 26.09932710494144
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unsupervised domain adaptation aims to generalize the supervised model
trained on a source domain to an unlabeled target domain. Marginal distribution
alignment of feature spaces is widely used to reduce the domain discrepancy
between the source and target domains. However, it assumes that the source and
target domains share the same label distribution, which limits their
application scope. In this paper, we consider a more general application
scenario where the label distributions of the source and target domains are not
the same. In this scenario, marginal distribution alignment-based methods will
be vulnerable to negative transfer. To address this issue, we propose a novel
unsupervised domain adaptation method, Deep Conditional Adaptation Network
(DCAN), based on conditional distribution alignment of feature spaces. To be
specific, we reduce the domain discrepancy by minimizing the Conditional
Maximum Mean Discrepancy between the conditional distributions of deep features
on the source and target domains, and extract the discriminant information from
target domain by maximizing the mutual information between samples and the
prediction labels. In addition, DCAN can be used to address a special scenario,
Partial unsupervised domain adaptation, where the target domain category is a
subset of the source domain category. Experiments on both unsupervised domain
adaptation and Partial unsupervised domain adaptation show that DCAN achieves
superior classification performance over state-of-the-art methods.
- Abstract(参考訳): 教師なしドメイン適応は、ソースドメインでトレーニングされた教師付きモデルをラベルなしターゲットドメインに一般化することを目的としている。
特徴空間のマージ分布アライメントは、ソースとターゲットドメイン間のドメイン差を低減するために広く用いられている。
しかし、ソースとターゲットドメインは同じラベルの分布を共有し、アプリケーションの範囲を制限していると仮定する。
本稿では、ソースドメインとターゲットドメインのラベル分布が同じではない、より一般的なアプリケーションシナリオについて考察する。
このシナリオでは、限界分布アライメントに基づく手法は負の転送に対して脆弱である。
そこで本稿では,特徴空間の条件分布アライメントに基づく非教師なし領域適応手法であるDeep Conditional Adaptation Network (DCAN)を提案する。
具体的には、ソース領域とターゲット領域の深い特徴の条件的分布の条件的最大平均偏差を最小化し、サンプルと予測ラベル間の相互情報を最大化することにより、対象領域から判別情報を抽出することにより、ドメイン不一致を低減させる。
さらに、DCANは、ターゲットドメインカテゴリがソースドメインカテゴリのサブセットである部分的教師なしドメイン適応という特別なシナリオに対処するために使用することができる。
非教師なし領域適応と部分教師なし領域適応の両方の実験により、DCANは最先端手法よりも優れた分類性能が得られることが示された。
関連論文リスト
- Generalizing to Unseen Domains with Wasserstein Distributional Robustness under Limited Source Knowledge [22.285156929279207]
ドメインの一般化は、目に見えないターゲットドメインでうまく機能する普遍的なモデルを学ぶことを目的としている。
We propose a novel domain generalization framework called Wasserstein Distributionally Robust Domain Generalization (WDRDG)。
論文 参考訳(メタデータ) (2022-07-11T14:46:50Z) - Discovering Domain Disentanglement for Generalized Multi-source Domain
Adaptation [48.02978226737235]
典型的なマルチソースドメイン適応(MSDA)アプローチは、ラベル付きソースドメインから学習した知識をラベル付きターゲットドメインに転送することを目的としている。
本稿では、各インスタンスのドメイン表現と意味的特徴を分割し、次元的独立性を奨励する変動型ドメイン・アンタングルメント(VDD)フレームワークを提案する。
論文 参考訳(メタデータ) (2022-07-11T04:33:08Z) - Discriminative Domain-Invariant Adversarial Network for Deep Domain
Generalization [33.84004077585957]
本稿では,ドメイン一般化のための識別型ドメイン不変逆数ネットワーク(DDIAN)を提案する。
DDIANは、最先端のドメイン一般化アプローチと比較して、トレーニング中の未確認対象データに対するより良い予測を実現している。
論文 参考訳(メタデータ) (2021-08-20T04:24:12Z) - Preserving Semantic Consistency in Unsupervised Domain Adaptation Using
Generative Adversarial Networks [33.84004077585957]
SCGAN (End-to-end novel consistent generation adversarial Network) を提案する。
このネットワークは、機能レベルでセマンティック情報をキャプチャすることで、ソースからターゲットドメインマッチングを実現できます。
本稿では,教師なしドメイン適応設定における最先端性能を超える提案手法の頑健性を示す。
論文 参考訳(メタデータ) (2021-04-28T12:23:30Z) - Instance Level Affinity-Based Transfer for Unsupervised Domain
Adaptation [74.71931918541748]
ILA-DAと呼ばれる適応中のソースからターゲットへの転送に対するインスタンス親和性に基づく基準を提案する。
まず、ソースとターゲットをまたいだ類似および異種サンプルを抽出し、マルチサンプルのコントラスト損失を利用してドメインアライメントプロセスを駆動する信頼性が高く効率的な手法を提案する。
ILA-DAの有効性は、様々なベンチマークデータセットに対する一般的なドメイン適応手法よりも精度が一貫した改善を観察することによって検証する。
論文 参考訳(メタデータ) (2021-04-03T01:33:14Z) - Re-energizing Domain Discriminator with Sample Relabeling for
Adversarial Domain Adaptation [88.86865069583149]
Unsupervised Domain Adapt (UDA)メソッドは、ドメインの競合トレーニングを利用して、機能を調整してドメインのギャップを減らす。
本研究では,Re-enforceable Adversarial Domain Adaptation (RADA) と呼ばれる効率的な最適化戦略を提案する。
RADAは、動的ドメインラベルを使用して、トレーニング中にドメイン識別器を再活性化することを目指しています。
論文 参考訳(メタデータ) (2021-03-22T08:32:55Z) - Discriminative Cross-Domain Feature Learning for Partial Domain
Adaptation [70.45936509510528]
部分的なドメイン適応は、より大きく多様なソースドメインからの知識を、より少ないクラス数でより小さなターゲットドメインに適応させることを目的としています。
ドメイン適応の最近の実践は、ターゲットドメインの擬似ラベルを組み込むことで、効果的な特徴を抽出する。
ターゲットデータを少数のソースデータのみにアライメントすることが不可欠である。
論文 参考訳(メタデータ) (2020-08-26T03:18:53Z) - Learning Target Domain Specific Classifier for Partial Domain Adaptation [85.71584004185031]
非教師付きドメイン適応(UDA)は、ラベル付きソースドメインからラベル付きターゲットドメインに知識を転送する際の分散不一致を低減することを目的としている。
本稿では,ターゲットラベル空間をソースラベル空間に仮定する,より現実的なUDAシナリオに焦点を当てる。
論文 参考訳(メタデータ) (2020-08-25T02:28:24Z) - Adversarial Network with Multiple Classifiers for Open Set Domain
Adaptation [9.251407403582501]
本稿では、対象ドメインがプライベート(未知クラス)ラベル空間と共有(未知クラス)ラベル空間の両方を持つようなオープンセットドメイン適応設定のタイプに焦点を当てる。
分布整合領域適応法はそのような設定では不十分である。
本稿では,複数の補助分類器を用いた新しい対向領域適応モデルを提案する。
論文 参考訳(メタデータ) (2020-07-01T11:23:07Z) - Cross-domain Self-supervised Learning for Domain Adaptation with Few
Source Labels [78.95901454696158]
ドメイン適応のためのクロスドメイン自己教師型学習手法を提案する。
本手法は,ソースラベルが少ない新しいターゲット領域において,ターゲット精度を著しく向上させる。
論文 参考訳(メタデータ) (2020-03-18T15:11:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。