論文の概要: Generalizing to Unseen Domains with Wasserstein Distributional Robustness under Limited Source Knowledge
- arxiv url: http://arxiv.org/abs/2207.04913v2
- Date: Sat, 23 Mar 2024 10:32:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-27 06:12:57.486990
- Title: Generalizing to Unseen Domains with Wasserstein Distributional Robustness under Limited Source Knowledge
- Title(参考訳): 限られた情報源知識下でのワッサーシュタイン分布ロバスト性をもつ未知領域への一般化
- Authors: Jingge Wang, Liyan Xie, Yao Xie, Shao-Lun Huang, Yang Li,
- Abstract要約: ドメインの一般化は、目に見えないターゲットドメインでうまく機能する普遍的なモデルを学ぶことを目的としている。
We propose a novel domain generalization framework called Wasserstein Distributionally Robust Domain Generalization (WDRDG)。
- 参考スコア(独自算出の注目度): 22.285156929279207
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Domain generalization aims at learning a universal model that performs well on unseen target domains, incorporating knowledge from multiple source domains. In this research, we consider the scenario where different domain shifts occur among conditional distributions of different classes across domains. When labeled samples in the source domains are limited, existing approaches are not sufficiently robust. To address this problem, we propose a novel domain generalization framework called {Wasserstein Distributionally Robust Domain Generalization} (WDRDG), inspired by the concept of distributionally robust optimization. We encourage robustness over conditional distributions within class-specific Wasserstein uncertainty sets and optimize the worst-case performance of a classifier over these uncertainty sets. We further develop a test-time adaptation module leveraging optimal transport to quantify the relationship between the unseen target domain and source domains to make adaptive inference for target data. Experiments on the Rotated MNIST, PACS and the VLCS datasets demonstrate that our method could effectively balance the robustness and discriminability in challenging generalization scenarios.
- Abstract(参考訳): ドメインの一般化は、目に見えないターゲットドメインでうまく機能する普遍的なモデルを学習することを目的としており、複数のソースドメインからの知識を取り入れている。
本研究では,ドメイン間の異なるクラスの条件分布において,異なるドメインシフトが発生するシナリオについて考察する。
ソースドメイン内のラベル付きサンプルが限定されている場合、既存のアプローチは十分に堅牢ではない。
この問題に対処するために,分散ロバスト領域一般化(Wasserstein Distributionally Robust Domain Generalization, WDRDG)と呼ばれる新しい領域一般化フレームワークを提案する。
クラス固有のワッサーシュタインの不確かさ集合における条件分布に対するロバスト性を促進し、これらの不確かさ集合に対する分類器の最悪の性能を最適化する。
さらに、最適輸送を利用したテスト時間適応モジュールを開発し、未確認のターゲットドメインとソースドメインの関係を定量化し、ターゲットデータに対する適応推論を行う。
回転MNIST,PACSおよびVLCSデータセットを用いた実験により,本手法が一般化シナリオにおけるロバスト性と差別性を効果的にバランスできることを示した。
関連論文リスト
- Revisiting the Domain Shift and Sample Uncertainty in Multi-source
Active Domain Transfer [69.82229895838577]
Active Domain Adaptation (ADA)は、アノテートするターゲットデータの限られた数を選択することで、新しいターゲットドメインにおけるモデル適応を最大限に向上することを目的としている。
この設定は、複数のソースからトレーニングデータを収集するより実践的なシナリオを無視します。
これは、ADAを単一のソースドメインから複数のソースドメインに拡張する、新しい、挑戦的な知識転送の設定を目標にしています。
論文 参考訳(メタデータ) (2023-11-21T13:12:21Z) - Moderately Distributional Exploration for Domain Generalization [32.57429594854056]
MODEは、未知のターゲット領域上で、証明可能な一般化性能を持つモデルを提供することができることを示す。
実験結果から,MODEは最先端のベースラインに比べて競争性能が高いことがわかった。
論文 参考訳(メタデータ) (2023-04-27T06:50:15Z) - Constrained Maximum Cross-Domain Likelihood for Domain Generalization [14.91361835243516]
ドメインの一般化は、複数のソースドメイン上で一般化可能なモデルを学ぶことを目的としている。
本稿では,異なる領域の後方分布間のKL偏差を最小限に抑える新しい領域一般化法を提案する。
Digits-DG、PACS、Office-Home、MiniDomainNetの4つの標準ベンチマークデータセットの実験は、我々のメソッドの優れたパフォーマンスを強調している。
論文 参考訳(メタデータ) (2022-10-09T03:41:02Z) - Adaptive Domain Generalization via Online Disagreement Minimization [17.215683606365445]
ドメインの一般化は、モデルを目に見えないターゲットのドメインに安全に転送することを目的としています。
AdaODMは、異なるターゲットドメインに対するテスト時にソースモデルを適応的に修正する。
その結果,AdaODMは未確認領域の一般化能力を安定的に向上することがわかった。
論文 参考訳(メタデータ) (2022-08-03T11:51:11Z) - Compound Domain Generalization via Meta-Knowledge Encoding [55.22920476224671]
マルチモーダル分布を再正規化するために,スタイル駆動型ドメイン固有正規化(SDNorm)を導入する。
組込み空間における関係モデリングを行うために,プロトタイプ表現,クラスセントロイドを利用する。
4つの標準ドメイン一般化ベンチマークの実験により、COMENはドメインの監督なしに最先端のパフォーマンスを上回ることが判明した。
論文 参考訳(メタデータ) (2022-03-24T11:54:59Z) - Class-conditioned Domain Generalization via Wasserstein Distributional
Robust Optimization [12.10885662305154]
複数のソースドメインが与えられた場合、ドメインの一般化は、目に見えないが関連するターゲットドメインでよく機能する普遍的なモデルを学ぶことを目的としている。
同じクラスが与えられた条件分布の変動が大きい場合、既存のアプローチは十分に堅牢ではない。
我々は、クラス条件領域の一般化問題を解決するために、分散ロバスト最適化の概念を拡張した。
論文 参考訳(メタデータ) (2021-09-08T14:23:03Z) - Discriminative Domain-Invariant Adversarial Network for Deep Domain
Generalization [33.84004077585957]
本稿では,ドメイン一般化のための識別型ドメイン不変逆数ネットワーク(DDIAN)を提案する。
DDIANは、最先端のドメイン一般化アプローチと比較して、トレーニング中の未確認対象データに対するより良い予測を実現している。
論文 参考訳(メタデータ) (2021-08-20T04:24:12Z) - Instance Level Affinity-Based Transfer for Unsupervised Domain
Adaptation [74.71931918541748]
ILA-DAと呼ばれる適応中のソースからターゲットへの転送に対するインスタンス親和性に基づく基準を提案する。
まず、ソースとターゲットをまたいだ類似および異種サンプルを抽出し、マルチサンプルのコントラスト損失を利用してドメインアライメントプロセスを駆動する信頼性が高く効率的な手法を提案する。
ILA-DAの有効性は、様々なベンチマークデータセットに対する一般的なドメイン適応手法よりも精度が一貫した改善を観察することによって検証する。
論文 参考訳(メタデータ) (2021-04-03T01:33:14Z) - Model-Based Domain Generalization [96.84818110323518]
本稿では,モデルベースドメイン一般化問題に対する新しいアプローチを提案する。
我々のアルゴリズムは、最新のwildsベンチマークの最先端手法を最大20ポイント上回った。
論文 参考訳(メタデータ) (2021-02-23T00:59:02Z) - Dual Distribution Alignment Network for Generalizable Person
Re-Identification [174.36157174951603]
ドメイン一般化(DG)は、人物再識別(Re-ID)を扱うための有望なソリューションとして機能する
本稿では、複数のソースドメインの分布を選択的に整列させることにより、この問題に対処するDual Distribution Alignment Network(DDAN)を提案する。
大規模なDomain Generalization Re-ID(DG Re-ID)ベンチマークでDDANを評価した。
論文 参考訳(メタデータ) (2020-07-27T00:08:07Z) - Domain Conditioned Adaptation Network [90.63261870610211]
本稿では,ドメイン条件付きチャネルアテンション機構を用いて,異なる畳み込みチャネルを励起するドメイン条件適応ネットワーク(DCAN)を提案する。
これは、ディープDAネットワークのドメインワイドな畳み込みチャネルアクティベーションを探求する最初の試みである。
論文 参考訳(メタデータ) (2020-05-14T04:23:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。