論文の概要: Cascaded deep monocular 3D human pose estimation with evolutionary
training data
- arxiv url: http://arxiv.org/abs/2006.07778v3
- Date: Fri, 9 Apr 2021 02:37:06 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-21 12:47:35.702444
- Title: Cascaded deep monocular 3D human pose estimation with evolutionary
training data
- Title(参考訳): 進化的学習データを用いた深部単眼3次元ポーズ推定
- Authors: Shichao Li, Lei Ke, Kevin Pratama, Yu-Wing Tai, Chi-Keung Tang,
Kwang-Ting Cheng
- Abstract要約: 深層表現学習は単眼の3次元ポーズ推定において顕著な精度を達成した。
本稿では,大量のトレーニングデータに対してスケーラブルな新しいデータ拡張手法を提案する。
本手法は,先行知識に触発された階層的人体表現と合成に基づいて,未知の3次元人体骨格を合成する。
- 参考スコア(独自算出の注目度): 76.3478675752847
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: End-to-end deep representation learning has achieved remarkable accuracy for
monocular 3D human pose estimation, yet these models may fail for unseen poses
with limited and fixed training data. This paper proposes a novel data
augmentation method that: (1) is scalable for synthesizing massive amount of
training data (over 8 million valid 3D human poses with corresponding 2D
projections) for training 2D-to-3D networks, (2) can effectively reduce dataset
bias. Our method evolves a limited dataset to synthesize unseen 3D human
skeletons based on a hierarchical human representation and heuristics inspired
by prior knowledge. Extensive experiments show that our approach not only
achieves state-of-the-art accuracy on the largest public benchmark, but also
generalizes significantly better to unseen and rare poses. Code, pre-trained
models and tools are available at this HTTPS URL.
- Abstract(参考訳): エンド・ツー・エンドの深層表現学習は、単眼の3次元人間のポーズ推定において顕著な精度を達成したが、これらのモデルは限られた訓練データで見えないポーズに失敗する可能性がある。
本稿では,(1)大量のトレーニングデータ(800万以上の有効3Dポーズと対応する2Dプロジェクション)を2D-3Dネットワークでトレーニングするためのスケーラブルで,(2)データセットバイアスを効果的に低減できる,新しいデータ拡張手法を提案する。
従来の知識に触発された階層的人間表現とヒューリスティックスに基づいて,未知の3次元人体骨格を合成するための限定データセットを進化させる。
広範な実験により,我々のアプローチは,最大の公開ベンチマークで最先端の精度を実現するだけでなく,見当たらない,稀なポーズに対してはるかに優れた一般化を実現することが示された。
コード、事前トレーニングされたモデル、ツールは、このHTTPS URLで利用できる。
関連論文リスト
- FAMOUS: High-Fidelity Monocular 3D Human Digitization Using View Synthesis [51.193297565630886]
テクスチャを正確に推測することの難しさは、特に正面視画像の人物の背中のような不明瞭な領域に残る。
このテクスチャ予測の制限は、大規模で多様な3Dデータセットの不足に起因する。
本稿では,3次元デジタル化におけるテクスチャと形状予測の両立を図るために,広範囲な2次元ファッションデータセットを活用することを提案する。
論文 参考訳(メタデータ) (2024-10-13T01:25:05Z) - Interpretable 2D Vision Models for 3D Medical Images [47.75089895500738]
本研究では,3次元画像処理における中間特徴表現を用いた2次元ネットワークの適応手法を提案する。
我々は、ベンチマークとして3D MedMNISTデータセットと、既存の手法に匹敵する数百の高分解能CTまたはMRIスキャンからなる2つの実世界のデータセットを示す。
論文 参考訳(メタデータ) (2023-07-13T08:27:09Z) - Decanus to Legatus: Synthetic training for 2D-3D human pose lifting [26.108023246654646]
10個の手作り3Dポーズ(Decanus)に基づく3Dポーズ分布から無限個の合成人間のポーズ(Legatus)を生成するアルゴリズムを提案する。
この結果から,特定データセットの実際のデータを用いた手法に匹敵する3次元ポーズ推定性能を,ゼロショット設定で実現し,フレームワークの可能性を示した。
論文 参考訳(メタデータ) (2022-10-05T13:10:19Z) - PoseTriplet: Co-evolving 3D Human Pose Estimation, Imitation, and
Hallucination under Self-supervision [102.48681650013698]
既存の自己監督型3次元ポーズ推定スキームは、学習を導くための弱い監督に大きく依存している。
そこで我々は,2D-3Dのポーズペアを明示的に生成し,監督を増強する,新しい自己監督手法を提案する。
これは、ポーズ推定器とポーズ幻覚器を併用して学習する強化学習ベースの模倣器を導入することで可能となる。
論文 参考訳(メタデータ) (2022-03-29T14:45:53Z) - Heuristic Weakly Supervised 3D Human Pose Estimation [13.82540778667711]
弱教師付き3D人間のポーズ(HW-HuP)ソリューションは、3Dのポーズデータが入手できない場合に3Dのポーズを推定する。
HW-HuPは,ヒトのベッドでのポーズと野生での幼児のポーズという,3次元のポーズデータが得られにくい2つの実践的な環境で,最先端のモデルにおいて有意義に改善されていることを示す。
論文 参考訳(メタデータ) (2021-05-23T18:40:29Z) - Adapted Human Pose: Monocular 3D Human Pose Estimation with Zero Real 3D
Pose Data [14.719976311208502]
トレーニングとテストデータドメインのギャップは、しばしばモデルのパフォーマンスに悪影響を及ぼします。
本稿では、外見とポーズ空間の両方における適応問題に対処する適応的ヒューマンポーズ(AHuP)アプローチを提案する。
AHuPは、実際のアプリケーションでは、ターゲットドメインからのデータはアクセスできないか、限られた情報しか取得できないという現実的な前提に基づいて構築されている。
論文 参考訳(メタデータ) (2021-05-23T01:20:40Z) - Synthetic Training for Monocular Human Mesh Recovery [100.38109761268639]
本稿では,RGB画像と大規模に異なる複数の身体部位の3次元メッシュを推定することを目的とする。
主な課題は、2D画像のすべての身体部分の3Dアノテーションを完備するトレーニングデータがないことである。
本稿では,D2S(Deep-to-scale)投影法を提案する。
論文 参考訳(メタデータ) (2020-10-27T03:31:35Z) - Exemplar Fine-Tuning for 3D Human Model Fitting Towards In-the-Wild 3D
Human Pose Estimation [107.07047303858664]
3次元の地平線アノテーションを持つ大規模な人的データセットは、野生では入手が困難である。
既存の2Dデータセットを高品質な3Dポーズマッチングで拡張することで、この問題に対処する。
結果として得られるアノテーションは、3Dのプロシージャネットワークをスクラッチからトレーニングするのに十分である。
論文 参考訳(メタデータ) (2020-04-07T20:21:18Z) - Weakly-Supervised 3D Human Pose Learning via Multi-view Images in the
Wild [101.70320427145388]
本稿では、3Dアノテーションを必要としない弱教師付きアプローチを提案し、ラベルのないマルチビューデータから3Dポーズを推定する。
提案手法を2つの大規模データセット上で評価する。
論文 参考訳(メタデータ) (2020-03-17T08:47:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。