論文の概要: Proximal Mapping for Deep Regularization
- arxiv url: http://arxiv.org/abs/2006.07822v1
- Date: Sun, 14 Jun 2020 07:04:14 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-21 09:49:49.890538
- Title: Proximal Mapping for Deep Regularization
- Title(参考訳): 深部正規化のための近位写像
- Authors: Mao Li, Yingyi Ma, Xinhua Zhang
- Abstract要約: ディープラーニングの成功を支えているのは、さまざまな事前データをモデル化できる効果的な正規化である。
本稿では, 直接的かつ明示的に正規化された隠蔽層出力を生成するディープネットワークに, 新しい層として近位写像を挿入することを提案する。
得られた技術はカーネルのワープとドロップアウトによく結びついており、堅牢な時間的学習とマルチビューモデリングのための新しいアルゴリズムが開発された。
- 参考スコア(独自算出の注目度): 15.48377586806766
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Underpinning the success of deep learning is effective regularizations that
allow a variety of priors in data to be modeled. For example, robustness to
adversarial perturbations, and correlations between multiple modalities.
However, most regularizers are specified in terms of hidden layer outputs,
which are not themselves optimization variables. In contrast to prevalent
methods that optimize them indirectly through model weights, we propose
inserting proximal mapping as a new layer to the deep network, which directly
and explicitly produces well regularized hidden layer outputs. The resulting
technique is shown well connected to kernel warping and dropout, and novel
algorithms were developed for robust temporal learning and multiview modeling,
both outperforming state-of-the-art methods.
- Abstract(参考訳): ディープラーニングの成功を支えているのは、さまざまな事前データをモデル化できる効果的な正規化である。
例えば、対向摂動に対する堅牢性、および多重モード間の相関である。
しかし、ほとんどの正規化器は、最適化変数ではない隠された層出力で指定されている。
モデル重みによって間接的に最適化する一般的な手法とは対照的に,本研究では,よく正規化された隠蔽層出力を直接的かつ明示的に生成するディープネットワークに,近位写像を新しい層として挿入することを提案する。
得られた技術はカーネルのワープとドロップアウトによく結びついており、堅牢な時間学習とマルチビューモデリングのための新しいアルゴリズムが開発された。
関連論文リスト
- Policy Gradient-Driven Noise Mask [3.69758875412828]
本稿では,マルチモーダル・マルチオーガナイズドデータセットの性能向上に適した条件付きノイズマスクの生成を学習する,新しい事前学習パイプラインを提案する。
重要な側面は、ポリシーネットワークの役割が微調整の前に中間的な(または加熱された)モデルを取得することに限定されていることである。
その結果、中間モデルの微調整は、分類と一般化の両方の従来の訓練アルゴリズムよりも、目に見えない概念タスクに優れていた。
論文 参考訳(メタデータ) (2024-04-29T23:53:42Z) - On the Versatile Uses of Partial Distance Correlation in Deep Learning [47.11577420740119]
本稿では、異なる次元の特徴空間間の相関を評価するために設計された距離相関(および部分変量)と呼ばれる統計学から(広く知られていない)再検討する。
本稿では,大規模モデルへの展開に必要なステップについて述べる。
これは、ある深いモデルw.r.t.を条件付けすること、非絡み合った表現を学習すること、および敵の攻撃に対してより堅牢な多様なモデルを最適化することなど、驚くべき一連のアプリケーションへの扉を開く。
論文 参考訳(メタデータ) (2022-07-20T06:36:11Z) - Sequential Bayesian Neural Subnetwork Ensembles [4.6354120722975125]
本稿では、トレーニング過程を通じてモデルの複雑さを一貫して維持する動的ベイズニューラルワークのシーケンシャルアンサンブルに対するアプローチを提案する。
提案手法は,予測精度,不確実性推定,アウト・オブ・ディストリビューション検出,および対向ロバスト性の観点から,従来の密度決定モデルとスパース決定モデル,ベイズアンサンブルモデルより優れる。
論文 参考訳(メタデータ) (2022-06-01T22:57:52Z) - Model-Based Deep Learning: On the Intersection of Deep Learning and
Optimization [101.32332941117271]
決定アルゴリズムは様々なアプリケーションで使われている。
数理モデルに頼らずにデータから調整された高度パラメトリックアーキテクチャを使用するディープラーニングアプローチが、ますます人気が高まっている。
モデルに基づく最適化とデータ中心のディープラーニングは、しばしば異なる規律とみなされる。
論文 参考訳(メタデータ) (2022-05-05T13:40:08Z) - Deep Equilibrium Assisted Block Sparse Coding of Inter-dependent
Signals: Application to Hyperspectral Imaging [71.57324258813675]
相互依存信号のデータセットは、列が強い依存を示す行列として定義される。
ニューラルネットワークは、事前に構造として機能し、基礎となる信号相互依存性を明らかにするために使用される。
ディープ・アンローリングとディープ・平衡に基づくアルゴリズムが開発され、高度に解釈可能で簡潔なディープ・ラーニング・ベース・アーキテクチャを形成する。
論文 参考訳(メタデータ) (2022-03-29T21:00:39Z) - Hybridization of Capsule and LSTM Networks for unsupervised anomaly
detection on multivariate data [0.0]
本稿では,Long-Short-Term-Memory(LSTM)とCapsule Networksを1つのネットワークに結合した新しいNNアーキテクチャを提案する。
提案手法は教師なし学習手法を用いて大量のラベル付きトレーニングデータを見つける際の問題を克服する。
論文 参考訳(メタデータ) (2022-02-11T10:33:53Z) - Revisiting Consistency Regularization for Semi-Supervised Learning [80.28461584135967]
そこで我々は,FeatDistLossというシンプルな手法により,一貫性の規則化を改良したフレームワークを提案する。
実験結果から,本モデルは様々なデータセットや設定のための新しい技術状態を定義する。
論文 参考訳(メタデータ) (2021-12-10T20:46:13Z) - Deep Variational Models for Collaborative Filtering-based Recommender
Systems [63.995130144110156]
ディープラーニングは、リコメンダシステムの結果を改善するために、正確な協調フィルタリングモデルを提供する。
提案するモデルは, 深層建築の潜伏空間において, 変分概念を注入性に適用する。
提案手法は, 入射雑音効果を超える変動エンリッチメントのシナリオにおいて, 提案手法の優位性を示す。
論文 参考訳(メタデータ) (2021-07-27T08:59:39Z) - Manifold Regularized Dynamic Network Pruning [102.24146031250034]
本稿では,全インスタンスの多様体情報をプルーンドネットワークの空間に埋め込むことにより,冗長フィルタを動的に除去する新しいパラダイムを提案する。
提案手法の有効性をいくつかのベンチマークで検証し,精度と計算コストの両面で優れた性能を示す。
論文 参考訳(メタデータ) (2021-03-10T03:59:03Z) - Deep Shells: Unsupervised Shape Correspondence with Optimal Transport [52.646396621449]
本稿では,3次元形状対応のための教師なし学習手法を提案する。
提案手法は,複数のデータセット上での最先端技術よりも大幅に改善されていることを示す。
論文 参考訳(メタデータ) (2020-10-28T22:24:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。