On the evolution of quantum non-equilibrium in expanding systems
- URL: http://arxiv.org/abs/2006.07840v1
- Date: Sun, 14 Jun 2020 08:25:29 GMT
- Title: On the evolution of quantum non-equilibrium in expanding systems
- Authors: Samuel Colin
- Abstract summary: We study quantum ensembles in which the Born Law is initially violated (quantum non-equilibrium)
We show examples of such ensembles that start close to quantum equilibrium, as measured by the standard coarse-grained H-function, but diverge from it with time.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider a particle confined in a uniformly expanding two-dimensional
square box from the point of the view of the de Broglie-Bohm pilot-wave theory.
In particular we study quantum ensembles in which the Born Law is initially
violated (quantum non-equilibrium). We show examples of such ensembles that
start close to quantum equilibrium, as measured by the standard coarse-grained
H-function, but diverge from it with time. We give an explanation of this
result and discuss the possibilities that it opens.
Related papers
- A New Framework for Quantum Phases in Open Systems: Steady State of Imaginary-Time Lindbladian Evolution [18.47824812164327]
We introduce the concept of imaginary-time Lindbladian evolution as an alternative framework.
This new approach defines gapped quantum phases in open systems through the spectrum properties of the imaginary-Liouville superoperator.
arXiv Detail & Related papers (2024-08-06T14:53:40Z) - A Theory of Quantum Jumps [44.99833362998488]
We study fluorescence and the phenomenon of quantum jumps'' in idealized models of atoms coupled to the quantized electromagnetic field.
Our results amount to a derivation of the fundamental randomness in the quantum-mechanical description of microscopic systems.
arXiv Detail & Related papers (2024-04-16T11:00:46Z) - Entropic Quantum Central Limit Theorem and Quantum Inverse Sumset
Theorem [0.0]
We establish an entropic, quantum central limit theorem and quantum inverse sumset theorem in discrete-variable quantum systems.
A byproduct of this work is a magic measure to quantify the nonstabilizer nature of a state, based on the quantum Ruzsa divergence.
arXiv Detail & Related papers (2024-01-25T18:43:24Z) - Independent-oscillator model and the quantum Langevin equation for an oscillator: A review [19.372542786476803]
A derivation of the quantum Langevin equation is outlined based on the microscopic model of the heat bath.
In the steady state, we analyze the quantum counterpart of energy equipartition theorem.
The free energy, entropy, specific heat, and third law of thermodynamics are discussed for one-dimensional quantum Brownian motion.
arXiv Detail & Related papers (2023-06-05T07:59:35Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Quantum entanglement without superposition [0.0]
Superposition states are at the origin of many paradoxes in quantum mechanics.
quantum jumps are a key feature of this approach, in blatant contrast with the continuity of the deterministic Schr"odinger equation.
arXiv Detail & Related papers (2022-12-09T13:56:35Z) - Quantum dynamics corresponding to chaotic BKL scenario [62.997667081978825]
Quantization smears the gravitational singularity avoiding its localization in the configuration space.
Results suggest that the generic singularity of general relativity can be avoided at quantum level.
arXiv Detail & Related papers (2022-04-24T13:32:45Z) - A new view on the superposition of quantum states and the wave-particle
duality of particles [2.83114308547142]
We show that the superposition of vortex states is not only a mathematical algebraic sum, but also corresponds to a physical process of formation.
We revisit the double-slit interference experiment and give a new interpretation.
arXiv Detail & Related papers (2021-07-21T05:54:41Z) - Decoherence and the puzzle of quantum Brownian motion in a gas [0.0]
The motion of macroscopic objects can not, under typical conditions, follow the Schr"odinger equation.
What is the quantum counterpart of the classical Brownian motion in a gas?
An open-end discussion of the quantum linear Boltzmann and quantum Fokker-Planck equations.
arXiv Detail & Related papers (2020-10-07T17:47:58Z) - Quantum potential in dust collapse with a negative cosmological constant [0.0]
We obtain the wave function describing collapsing dust in an anti-de Sitter background, as seen by a co-moving observer.
We perform a causal de Broglie-Bohm analysis, and obtain the corresponding quantum potential.
An initially collapsing solution with a negative cosmological constant bounces back after reaching a minimum radius.
arXiv Detail & Related papers (2020-07-21T17:43:02Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.