A new view on the superposition of quantum states and the wave-particle
duality of particles
- URL: http://arxiv.org/abs/2107.09884v1
- Date: Wed, 21 Jul 2021 05:54:41 GMT
- Title: A new view on the superposition of quantum states and the wave-particle
duality of particles
- Authors: Yong-Jun Qiao and Guo-Feng Zhang
- Abstract summary: We show that the superposition of vortex states is not only a mathematical algebraic sum, but also corresponds to a physical process of formation.
We revisit the double-slit interference experiment and give a new interpretation.
- Score: 2.83114308547142
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We construct a coupled quantum vortex superposition state (CVSS), since in
actual physical systems, linear Schrodinger equations will not be available
because of a nonlinear effect. By studying the dynamic evolution of CVSS both
analytically and numerically, we show that the superposition of vortex states
is not only a mathematical algebraic sum, but also corresponds to a physical
process of formation. Moreover, a new method to generate quantum vortex lattice
in CVSS research is given. By comparing with the density profiles and phase
distributions of quantum vortex state, we have a new understanding of vortex
state, which means that there is spatial degeneracy of angular momentum of a
particle. According to this idea, a free particle can be understood as the
center of mass of a ring-shaped matter in space. Thus, we revisit the
double-slit interference experiment and give a new interpretation.
Related papers
- A non-hermitean momentum operator for the particle in a box [49.1574468325115]
We show how to construct the corresponding hermitean Hamiltonian for the infinite as well as concrete example.
The resulting Hilbert space can be decomposed into a physical and unphysical subspace.
arXiv Detail & Related papers (2024-03-20T12:51:58Z) - Quantum mechanics without quantum potentials [0.0]
Non-locality in quantum mechanics can be resolved by considering relativistically covariant diffusion in spacetime.
We introduce the concept of momentum equilinear to replace the second-order Bohm-Newton equations of motion.
arXiv Detail & Related papers (2024-01-08T18:51:38Z) - Superdiffusion of vortices in two-component quantum fluids of light [0.0]
Kerr nonlinearity promotes interactions between the photons, displaying features that are analogue of a Bose-Einstein condensates.
We numerically solve the problem by simulating a vortex-like impurity in the presence of noise.
We support our results with a theory that has been previously developed for the brownian motion of point-like particles.
arXiv Detail & Related papers (2023-12-11T12:04:40Z) - Macroscopic Quantum Superpositions via Dynamics in a Wide Double-Well
Potential [0.0]
We present an experimental proposal for the rapid preparation of the center of mass of a levitated particle in a macroscopic quantum state.
This state is prepared by letting the particle evolve in a static double-well potential after a sudden switchoff of the harmonic trap.
We highlight the possibility of using two particles, one evolving in each potential well, to mitigate the impact of collective sources of noise and decoherence.
arXiv Detail & Related papers (2023-03-14T15:00:55Z) - Quantum particles in non-commutative space-time: an identity crisis [0.0]
We argue that the notion of identical particles is no longer well defined in quantum systems governed by non-commutative deformations of space-time symmetries.
Our analysis is based on the observation that, for states containing more than one particle, only the total momentum of the system is a well defined quantum number.
arXiv Detail & Related papers (2022-12-07T15:22:51Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Quantum particle across Grushin singularity [77.34726150561087]
We study the phenomenon of transmission across the singularity that separates the two half-cylinders.
All the local realisations of the free (Laplace-Beltrami) quantum Hamiltonian are examined as non-equivalent protocols of transmission/reflection.
This allows to comprehend the distinguished status of the so-called bridging' transmission protocol previously identified in the literature.
arXiv Detail & Related papers (2020-11-27T12:53:23Z) - Bose-Einstein condensate soliton qubit states for metrological
applications [58.720142291102135]
We propose novel quantum metrology applications with two soliton qubit states.
Phase space analysis, in terms of population imbalance - phase difference variables, is also performed to demonstrate macroscopic quantum self-trapping regimes.
arXiv Detail & Related papers (2020-11-26T09:05:06Z) - The role of boundary conditions in quantum computations of scattering
observables [58.720142291102135]
Quantum computing may offer the opportunity to simulate strongly-interacting field theories, such as quantum chromodynamics, with physical time evolution.
As with present-day calculations, quantum computation strategies still require the restriction to a finite system size.
We quantify the volume effects for various $1+1$D Minkowski-signature quantities and show that these can be a significant source of systematic uncertainty.
arXiv Detail & Related papers (2020-07-01T17:43:11Z) - On the evolution of quantum non-equilibrium in expanding systems [0.0]
We study quantum ensembles in which the Born Law is initially violated (quantum non-equilibrium)
We show examples of such ensembles that start close to quantum equilibrium, as measured by the standard coarse-grained H-function, but diverge from it with time.
arXiv Detail & Related papers (2020-06-14T08:25:29Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.