Cityscapes 3D: Dataset and Benchmark for 9 DoF Vehicle Detection
- URL: http://arxiv.org/abs/2006.07864v1
- Date: Sun, 14 Jun 2020 10:56:27 GMT
- Title: Cityscapes 3D: Dataset and Benchmark for 9 DoF Vehicle Detection
- Authors: Nils G\"ahlert, Nicolas Jourdan, Marius Cordts, Uwe Franke, Joachim
Denzler
- Abstract summary: We propose Cityscapes 3D, extending the original Cityscapes dataset with 3D bounding box annotations for all types of vehicles.
In contrast to existing datasets, our 3D annotations were labeled using stereo RGB images only and capture all nine degrees of freedom.
In addition, we complement the Cityscapes benchmark suite with 3D vehicle detection based on the new annotations as well as metrics presented in this work.
- Score: 7.531596091318718
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Detecting vehicles and representing their position and orientation in the
three dimensional space is a key technology for autonomous driving. Recently,
methods for 3D vehicle detection solely based on monocular RGB images gained
popularity. In order to facilitate this task as well as to compare and drive
state-of-the-art methods, several new datasets and benchmarks have been
published. Ground truth annotations of vehicles are usually obtained using
lidar point clouds, which often induces errors due to imperfect calibration or
synchronization between both sensors. To this end, we propose Cityscapes 3D,
extending the original Cityscapes dataset with 3D bounding box annotations for
all types of vehicles. In contrast to existing datasets, our 3D annotations
were labeled using stereo RGB images only and capture all nine degrees of
freedom. This leads to a pixel-accurate reprojection in the RGB image and a
higher range of annotations compared to lidar-based approaches. In order to
ease multitask learning, we provide a pairing of 2D instance segments with 3D
bounding boxes. In addition, we complement the Cityscapes benchmark suite with
3D vehicle detection based on the new annotations as well as metrics presented
in this work. Dataset and benchmark are available online.
Related papers
- Neural Rendering based Urban Scene Reconstruction for Autonomous Driving [8.007494499012624]
We propose a multimodal 3D scene reconstruction using a framework combining neural implicit surfaces and radiance fields.
Dense 3D reconstruction has many applications in automated driving including automated annotation validation.
We demonstrate qualitative and quantitative results on challenging automotive scenes.
arXiv Detail & Related papers (2024-02-09T23:20:23Z) - View-to-Label: Multi-View Consistency for Self-Supervised 3D Object
Detection [46.077668660248534]
We propose a novel approach to self-supervise 3D object detection purely from RGB sequences alone.
Our experiments on KITTI 3D dataset demonstrate performance on par with state-of-the-art self-supervised methods.
arXiv Detail & Related papers (2023-05-29T09:30:39Z) - 3D Data Augmentation for Driving Scenes on Camera [50.41413053812315]
We propose a 3D data augmentation approach termed Drive-3DAug, aiming at augmenting the driving scenes on camera in the 3D space.
We first utilize Neural Radiance Field (NeRF) to reconstruct the 3D models of background and foreground objects.
Then, augmented driving scenes can be obtained by placing the 3D objects with adapted location and orientation at the pre-defined valid region of backgrounds.
arXiv Detail & Related papers (2023-03-18T05:51:05Z) - Image-to-Lidar Self-Supervised Distillation for Autonomous Driving Data [80.14669385741202]
We propose a self-supervised pre-training method for 3D perception models tailored to autonomous driving data.
We leverage the availability of synchronized and calibrated image and Lidar sensors in autonomous driving setups.
Our method does not require any point cloud nor image annotations.
arXiv Detail & Related papers (2022-03-30T12:40:30Z) - Rope3D: TheRoadside Perception Dataset for Autonomous Driving and
Monocular 3D Object Detection Task [48.555440807415664]
We present the first high-diversity challenging Roadside Perception 3D dataset- Rope3D from a novel view.
The dataset consists of 50k images and over 1.5M 3D objects in various scenes.
We propose to leverage the geometry constraint to solve the inherent ambiguities caused by various sensors, viewpoints.
arXiv Detail & Related papers (2022-03-25T12:13:23Z) - Monocular Quasi-Dense 3D Object Tracking [99.51683944057191]
A reliable and accurate 3D tracking framework is essential for predicting future locations of surrounding objects and planning the observer's actions in numerous applications such as autonomous driving.
We propose a framework that can effectively associate moving objects over time and estimate their full 3D bounding box information from a sequence of 2D images captured on a moving platform.
arXiv Detail & Related papers (2021-03-12T15:30:02Z) - Learning to Predict the 3D Layout of a Scene [0.3867363075280544]
We propose a method that only uses a single RGB image, thus enabling applications in devices or vehicles that do not have LiDAR sensors.
We use the KITTI dataset for training, which consists of street traffic scenes with class labels, 2D bounding boxes and 3D annotations with seven degrees of freedom.
We achieve a mean average precision of 47.3% for moderately difficult data, measured at a 3D intersection over union threshold of 70%, as required by the official KITTI benchmark; outperforming previous state-of-the-art single RGB only methods by a large margin.
arXiv Detail & Related papers (2020-11-19T17:23:30Z) - PerMO: Perceiving More at Once from a Single Image for Autonomous
Driving [76.35684439949094]
We present a novel approach to detect, segment, and reconstruct complete textured 3D models of vehicles from a single image.
Our approach combines the strengths of deep learning and the elegance of traditional techniques.
We have integrated these algorithms with an autonomous driving system.
arXiv Detail & Related papers (2020-07-16T05:02:45Z) - Single-Shot 3D Detection of Vehicles from Monocular RGB Images via
Geometry Constrained Keypoints in Real-Time [6.82446891805815]
We propose a novel 3D single-shot object detection method for detecting vehicles in monocular RGB images.
Our approach lifts 2D detections to 3D space by predicting additional regression and classification parameters.
We test our approach on different datasets for autonomous driving and evaluate it using the challenging KITTI 3D Object Detection and the novel nuScenes Object Detection benchmarks.
arXiv Detail & Related papers (2020-06-23T15:10:19Z) - ZoomNet: Part-Aware Adaptive Zooming Neural Network for 3D Object
Detection [69.68263074432224]
We present a novel framework named ZoomNet for stereo imagery-based 3D detection.
The pipeline of ZoomNet begins with an ordinary 2D object detection model which is used to obtain pairs of left-right bounding boxes.
To further exploit the abundant texture cues in RGB images for more accurate disparity estimation, we introduce a conceptually straight-forward module -- adaptive zooming.
arXiv Detail & Related papers (2020-03-01T17:18:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.