論文の概要: Meta Approach to Data Augmentation Optimization
- arxiv url: http://arxiv.org/abs/2006.07965v1
- Date: Sun, 14 Jun 2020 18:11:52 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-21 13:12:55.655994
- Title: Meta Approach to Data Augmentation Optimization
- Title(参考訳): データ拡張最適化へのメタアプローチ
- Authors: Ryuichiro Hataya, Jan Zdenek, Kazuki Yoshizoe, Hideki Nakayama
- Abstract要約: 本稿では,画像認識モデルとデータ拡張ポリシーを同時に最適化し,勾配勾配を用いた性能向上を提案する。
従来の手法とは異なり,提案手法はプロキシタスクの使用や検索スペースの削減を回避し,バリデーション性能を直接改善する。
- 参考スコア(独自算出の注目度): 27.46030563988489
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data augmentation policies drastically improve the performance of image
recognition tasks, especially when the policies are optimized for the target
data and tasks. In this paper, we propose to optimize image recognition models
and data augmentation policies simultaneously to improve the performance using
gradient descent. Unlike prior methods, our approach avoids using proxy tasks
or reducing search space, and can directly improve the validation performance.
Our method achieves efficient and scalable training by approximating the
gradient of policies by implicit gradient with Neumann series approximation. We
demonstrate that our approach can improve the performance of various image
classification tasks, including ImageNet classification and fine-grained
recognition, without using dataset-specific hyperparameter tuning.
- Abstract(参考訳): データ拡張ポリシーは、特に対象のデータとタスクに最適化された場合、画像認識タスクのパフォーマンスを劇的に改善する。
本稿では,画像認識モデルとデータ拡張ポリシーを同時に最適化し,勾配勾配を用いた性能向上を提案する。
従来の手法とは異なり,提案手法はプロキシタスクの使用や検索スペースの削減を回避し,検証性能を直接改善する。
本手法は,ノイマン級数近似による暗黙的勾配によるポリシーの勾配を近似することにより,効率的かつスケーラブルなトレーニングを実現する。
我々は,データセット固有のハイパーパラメータチューニングを使わずに,画像ネット分類や微粒化認識など,さまざまな画像分類タスクの性能を向上させることができることを示す。
関連論文リスト
- Adaptive Image Registration: A Hybrid Approach Integrating Deep Learning
and Optimization Functions for Enhanced Precision [13.242184146186974]
本稿では,ディープニューラルネットワークと最適化に基づく画像登録のための単一のフレームワークを提案する。
また, 実験データの最大1.6%の改善と, 同じ推定時間を維持しつつ, 変形場平滑化における1.0%の性能向上を示す。
論文 参考訳(メタデータ) (2023-11-27T02:48:06Z) - Acceleration in Policy Optimization [50.323182853069184]
我々は、楽観的かつ適応的な更新を通じて、政策改善のステップにフォレストを組み込むことにより、強化学習(RL)における政策最適化手法を加速するための統一パラダイムに向けて研究する。
我々は、楽観主義を、政策の将来行動の予測モデルとして定義し、適応性は、過度な予測や変化に対する遅延反応からエラーを軽減するために、即時かつ予測的な修正措置をとるものである。
我々は,メタグラディエント学習による適応型楽観的ポリシー勾配アルゴリズムを設計し,実証的なタスクにおいて,加速度に関連するいくつかの設計選択を実証的に強調する。
論文 参考訳(メタデータ) (2023-06-18T15:50:57Z) - Augmentation Learning for Semi-Supervised Classification [13.519613713213277]
本稿では,特定のデータセットに対して最も効果的なデータ拡張ポリシーを自動選択する半教師付き学習手法を提案する。
ImageNet以外のデータセットへの拡張にポリシー学習をどのように適用できるかを示す。
論文 参考訳(メタデータ) (2022-08-03T10:06:51Z) - TeachAugment: Data Augmentation Optimization Using Teacher Knowledge [11.696069523681178]
本稿では,TeachAugment と呼ばれる逆戦略に基づくデータ拡張最適化手法を提案する。
画像分類,セマンティックセグメンテーション,教師なし表現学習において,TeachAugmentは既存の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-02-25T06:22:51Z) - An Adaptive Framework for Learning Unsupervised Depth Completion [59.17364202590475]
カラー画像から高密度深度マップとそれに伴うスパース深度測定を推定する手法を提案する。
正規化とコビジュアライゼーションは、モデルの適合度とデータによって関連付けられており、単一のフレームワークに統合可能であることを示す。
論文 参考訳(メタデータ) (2021-06-06T02:27:55Z) - Semi-On-Policy Training for Sample Efficient Multi-Agent Policy
Gradients [51.749831824106046]
本稿では,オンライン政策グラデーション手法のサンプル非効率性に効果的かつ効率的な手法として,セミ・オン・ポリティ(SOP)トレーニングを導入する。
提案手法は,様々なSMACタスクにおいて,最先端の値ベース手法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2021-04-27T19:37:01Z) - MetaAlign: Coordinating Domain Alignment and Classification for
Unsupervised Domain Adaptation [84.90801699807426]
本稿ではMetaAlignと呼ばれるメタ最適化に基づく効果的な戦略を提案する。
ドメインアライメントの目的と分類の目的をメタ学習計画におけるメタトレーニングとメタテストのタスクとして扱う。
実験結果は,アライメントに基づくベースラインアプローチを用いた提案手法の有効性を実証した。
論文 参考訳(メタデータ) (2021-03-25T03:16:05Z) - Data Augmentation for Meta-Learning [58.47185740820304]
メタ学習アルゴリズムは、各トレーニングステップでデータ、クエリデータ、タスクをサンプリングする。
データ拡張は、クラス毎に利用可能な画像の数を増やすだけでなく、全く新しいクラス/タスクを生成するためにも使用できる。
提案したメタ固有データ拡張は,数ショットの分類ベンチマークにおいて,メタラーナーの性能を著しく向上させる。
論文 参考訳(メタデータ) (2020-10-14T13:48:22Z) - Learning Test-time Augmentation for Content-based Image Retrieval [42.188013259368766]
オフザシェルフ畳み込みニューラルネットワークは、多くの画像検索タスクにおいて優れた結果をもたらす。
既存の画像検索手法では、ターゲットデータ特有のバリエーションに適応するために、事前訓練されたネットワークを微調整または修正する必要がある。
本手法は, テスト時に強調した画像から抽出した特徴を, 強化学習を通じて学習したポリシーに則って集約することにより, 既製の特徴の分散を促進させる。
論文 参考訳(メタデータ) (2020-02-05T05:08:41Z) - GridMask Data Augmentation [76.79300104795966]
本稿では,新しいデータ拡張手法であるGridMaskを提案する。
情報除去を利用して、様々なコンピュータビジョンタスクで最先端の結果を達成する。
論文 参考訳(メタデータ) (2020-01-13T07:27:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。