論文の概要: Data Augmentation for Meta-Learning
- arxiv url: http://arxiv.org/abs/2010.07092v2
- Date: Tue, 22 Jun 2021 16:06:36 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-07 12:53:32.334610
- Title: Data Augmentation for Meta-Learning
- Title(参考訳): メタラーニングのためのデータ拡張
- Authors: Renkun Ni, Micah Goldblum, Amr Sharaf, Kezhi Kong, Tom Goldstein
- Abstract要約: メタ学習アルゴリズムは、各トレーニングステップでデータ、クエリデータ、タスクをサンプリングする。
データ拡張は、クラス毎に利用可能な画像の数を増やすだけでなく、全く新しいクラス/タスクを生成するためにも使用できる。
提案したメタ固有データ拡張は,数ショットの分類ベンチマークにおいて,メタラーナーの性能を著しく向上させる。
- 参考スコア(独自算出の注目度): 58.47185740820304
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Conventional image classifiers are trained by randomly sampling mini-batches
of images. To achieve state-of-the-art performance, practitioners use
sophisticated data augmentation schemes to expand the amount of training data
available for sampling. In contrast, meta-learning algorithms sample support
data, query data, and tasks on each training step. In this complex sampling
scenario, data augmentation can be used not only to expand the number of images
available per class, but also to generate entirely new classes/tasks. We
systematically dissect the meta-learning pipeline and investigate the distinct
ways in which data augmentation can be integrated at both the image and class
levels. Our proposed meta-specific data augmentation significantly improves the
performance of meta-learners on few-shot classification benchmarks.
- Abstract(参考訳): 従来の画像分類器は、画像のミニバッチをランダムにサンプリングして訓練する。
最先端のパフォーマンスを達成するため、実践者は高度なデータ拡張スキームを使用して、サンプリングに利用可能なトレーニングデータの量を増やす。
対照的に、メタ学習アルゴリズムは、各トレーニングステップでデータ、クエリデータ、タスクをサンプリングする。
この複雑なサンプリングシナリオでは、データ拡張はクラス毎のイメージ数を拡大するだけでなく、全く新しいクラス/タスクを生成するためにも使用できる。
我々は,メタラーニングパイプラインを体系的に分離し,画像レベルとクラスレベルの両方でデータ拡張を統合する方法について検討する。
提案したメタ固有データ拡張は,数ショット分類ベンチマークにおけるメタラーナーの性能を著しく向上させる。
関連論文リスト
- Rethinking Transformers Pre-training for Multi-Spectral Satellite
Imagery [78.43828998065071]
教師なし学習の最近の進歩は、下流タスクにおける有望な結果を達成するための大きな視覚モデルの可能性を示している。
このような事前学習技術は、大量の未学習データが利用可能であることから、リモートセンシング領域でも最近研究されている。
本稿では,マルチモーダルで効果的に活用されるマルチスケール情報の事前学習と活用について述べる。
論文 参考訳(メタデータ) (2024-03-08T16:18:04Z) - Towards Adaptable and Interactive Image Captioning with Data
Augmentation and Episodic Memory [8.584932159968002]
本稿では,画像キャプションのためのIMLパイプラインを提案する。これにより,事前学習したモデルをユーザ入力に基づく新しいデータ分布に漸進的に適応させることができる。
データの増大は結果が悪化するが、たとえ比較的少量のデータが利用可能であったとしても、エピソードメモリは、これまで見られたクラスタからの知識を維持するための効果的な戦略である。
論文 参考訳(メタデータ) (2023-06-06T08:38:10Z) - Semi-Supervised Image Captioning by Adversarially Propagating Labeled
Data [95.0476489266988]
本稿では、画像キャプションモデルの一般化を改善するための、新しいデータ効率半教師付きフレームワークを提案する。
提案手法は,キャプタにペアデータから学習し,段階的に未ペアデータの関連付けを行うよう訓練する。
1)画像ベースと(2)高密度領域ベースキャプションデータセットの両方を総合的かつ包括的な実験結果とし,それに続いて,少ないペアリングデータセットの包括的分析を行った。
論文 参考訳(メタデータ) (2023-01-26T15:25:43Z) - Augmentation Learning for Semi-Supervised Classification [13.519613713213277]
本稿では,特定のデータセットに対して最も効果的なデータ拡張ポリシーを自動選択する半教師付き学習手法を提案する。
ImageNet以外のデータセットへの拡張にポリシー学習をどのように適用できるかを示す。
論文 参考訳(メタデータ) (2022-08-03T10:06:51Z) - Meta-Learning with Fewer Tasks through Task Interpolation [67.03769747726666]
現在のメタ学習アルゴリズムは多数のメタトレーニングタスクを必要としており、実際のシナリオではアクセスできない可能性がある。
タスクグラデーションを用いたメタラーニング(MLTI)により,タスクのペアをランダムにサンプリングし,対応する特徴やラベルを補間することにより,タスクを効果的に生成する。
実証的な実験では,提案する汎用MLTIフレームワークが代表的なメタ学習アルゴリズムと互換性があり,他の最先端戦略を一貫して上回っていることがわかった。
論文 参考訳(メタデータ) (2021-06-04T20:15:34Z) - Learning Representational Invariances for Data-Efficient Action
Recognition [52.23716087656834]
我々は,データ拡張戦略により,Kinetics-100,UCF-101,HMDB-51データセットのパフォーマンスが期待できることを示す。
また,完全な教師付き設定でデータ拡張戦略を検証し,性能向上を実証した。
論文 参考訳(メタデータ) (2021-03-30T17:59:49Z) - Image Augmentation for Multitask Few-Shot Learning: Agricultural Domain
Use-Case [0.0]
本稿では,植物フェノミクスドメインの例に基づいて,小規模で不均衡なデータセットに挑戦する。
画像拡張フレームワークを導入することで,トレーニングサンプル数を大幅に拡大することができる。
本手法は,少数のトレーニングサンプルが利用可能であれば,モデル性能が向上することを示す。
論文 参考訳(メタデータ) (2021-02-24T14:08:34Z) - MetaAugment: Sample-Aware Data Augmentation Policy Learning [20.988767360529362]
我々は、サンプル再重み付け問題として定式化することで、サンプル認識データ拡張ポリシーを効率的に学習する。
拡張ポリシーネットワークは、変換と対応する拡張画像とを入力とし、重みを出力してタスクネットワークで計算された拡張画像損失を調整する。
トレーニング段階では、タスクネットワークは強化訓練画像の重み付け損失を最小限に抑え、ポリシーネットワークはメタラーニングによる検証セット上のタスクネットワークの損失を最小限にする。
論文 参考訳(メタデータ) (2020-12-22T15:19:27Z) - Incremental Meta-Learning via Indirect Discriminant Alignment [118.61152684795178]
メタ学習のメタ学習段階において,段階的な学習の概念を発達させる。
我々のアプローチは、完全なメタトレーニングセットでモデルをトレーニングするのと比べて、テスト時に好適に機能する。
論文 参考訳(メタデータ) (2020-02-11T01:39:12Z) - Learning Test-time Augmentation for Content-based Image Retrieval [42.188013259368766]
オフザシェルフ畳み込みニューラルネットワークは、多くの画像検索タスクにおいて優れた結果をもたらす。
既存の画像検索手法では、ターゲットデータ特有のバリエーションに適応するために、事前訓練されたネットワークを微調整または修正する必要がある。
本手法は, テスト時に強調した画像から抽出した特徴を, 強化学習を通じて学習したポリシーに則って集約することにより, 既製の特徴の分散を促進させる。
論文 参考訳(メタデータ) (2020-02-05T05:08:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。