Classification and Recognition of Encrypted EEG Data Neural Network
- URL: http://arxiv.org/abs/2006.08122v1
- Date: Mon, 15 Jun 2020 04:21:23 GMT
- Title: Classification and Recognition of Encrypted EEG Data Neural Network
- Authors: Yongshuang Liu, Haiping Huang, Fu Xiao, Reza Malekian, Wenming Wang
- Abstract summary: A classification and recognition method of encrypted EEG data based on neural network is proposed.
It adopts Paillier encryption algorithm to encrypt EEG data and resolves the problem of floating point operations.
Our proposal has the satisfactory accuracy, efficiency and feasibility compared with other solutions.
- Score: 10.171935814743678
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the rapid development of Machine Learning technology applied in
electroencephalography (EEG) signals, Brain-Computer Interface (BCI) has
emerged as a novel and convenient human-computer interaction for smart home,
intelligent medical and other Internet of Things (IoT) scenarios. However,
security issues such as sensitive information disclosure and unauthorized
operations have not received sufficient concerns. There are still some defects
with the existing solutions to encrypted EEG data such as low accuracy, high
time complexity or slow processing speed. For this reason, a classification and
recognition method of encrypted EEG data based on neural network is proposed,
which adopts Paillier encryption algorithm to encrypt EEG data and meanwhile
resolves the problem of floating point operations. In addition, it improves
traditional feed-forward neural network (FNN) by using the approximate function
instead of activation function and realizes multi-classification of encrypted
EEG data. Extensive experiments are conducted to explore the effect of several
metrics (such as the hidden neuron size and the learning rate updated by
improved simulated annealing algorithm) on the recognition results. Followed by
security and time cost analysis, the proposed model and approach are validated
and evaluated on public EEG datasets provided by PhysioNet, BCI Competition IV
and EPILEPSIAE. The experimental results show that our proposal has the
satisfactory accuracy, efficiency and feasibility compared with other
solutions.
Related papers
- EEG decoding with conditional identification information [7.873458431535408]
Decoding EEG signals is crucial for unraveling human brain and advancing brain-computer interfaces.
Traditional machine learning algorithms have been hindered by the high noise levels and inherent inter-person variations in EEG signals.
Recent advances in deep neural networks (DNNs) have shown promise, owing to their advanced nonlinear modeling capabilities.
arXiv Detail & Related papers (2024-03-21T13:38:59Z) - MAtt: A Manifold Attention Network for EEG Decoding [0.966840768820136]
We propose a novel geometric learning (GDL)-based model for EEG decoding, featuring a manifold attention network (mAtt)
The evaluation of MAtt on both time-synchronous and -asyncronous EEG datasets suggests its superiority over other leading DL methods for general EEG decoding.
arXiv Detail & Related papers (2022-10-05T02:26:31Z) - EEG-ITNet: An Explainable Inception Temporal Convolutional Network for
Motor Imagery Classification [0.5616884466478884]
We propose an end-to-end deep learning architecture called EEG-ITNet.
Our model can extract rich spectral, spatial, and temporal information from multi-channel EEG signals.
EEG-ITNet shows up to 5.9% improvement in the classification accuracy in different scenarios.
arXiv Detail & Related papers (2022-04-14T13:18:43Z) - Effective classification of ecg signals using enhanced convolutional
neural network in iot [0.0]
This paper proposes a routing system for IoT healthcare platforms based on Dynamic Source Routing (DSR) and Routing by Energy and Link Quality (REL)
Deep-ECG will employ a deep CNN to extract important characteristics, which will then be compared using simple and fast distance functions.
The results show that the proposed strategy outperforms others in terms of classification accuracy.
arXiv Detail & Related papers (2022-02-08T13:37:23Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
Generative Adversarial Imputation Nets (GANs) and GAN-based techniques have attracted attention as unsupervised machine learning methods.
We name our proposed method as Con Conval Generative Adversarial Imputation Nets (Conv-GAIN)
arXiv Detail & Related papers (2021-11-03T03:50:48Z) - EEG-Inception: An Accurate and Robust End-to-End Neural Network for
EEG-based Motor Imagery Classification [123.93460670568554]
This paper proposes a novel convolutional neural network (CNN) architecture for accurate and robust EEG-based motor imagery (MI) classification.
The proposed CNN model, namely EEG-Inception, is built on the backbone of the Inception-Time network.
The proposed network is an end-to-end classification, as it takes the raw EEG signals as the input and does not require complex EEG signal-preprocessing.
arXiv Detail & Related papers (2021-01-24T19:03:10Z) - Emotional EEG Classification using Connectivity Features and
Convolutional Neural Networks [81.74442855155843]
We introduce a new classification system that utilizes brain connectivity with a CNN and validate its effectiveness via the emotional video classification.
The level of concentration of the brain connectivity related to the emotional property of the target video is correlated with classification performance.
arXiv Detail & Related papers (2021-01-18T13:28:08Z) - Uncovering the structure of clinical EEG signals with self-supervised
learning [64.4754948595556]
Supervised learning paradigms are often limited by the amount of labeled data that is available.
This phenomenon is particularly problematic in clinically-relevant data, such as electroencephalography (EEG)
By extracting information from unlabeled data, it might be possible to reach competitive performance with deep neural networks.
arXiv Detail & Related papers (2020-07-31T14:34:47Z) - Deep Feature Mining via Attention-based BiLSTM-GCN for Human Motor
Imagery Recognition [9.039355687614076]
This paper presents a novel deep learning approach designed towards remarkably accurate and responsive motor imagery (MI) recognition based on scalp EEG.
BiLSTM with the Attention mechanism manages to derive relevant features from raw EEG signals.
The 0.4-second detection framework has shown effective and efficient prediction based on individual and group-wise training, with 98.81% and 94.64% accuracy, respectively.
arXiv Detail & Related papers (2020-05-02T10:03:40Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
Spiking Neural Networks (SNNs) usetemporal spike patterns to represent and transmit information, which is not only biologically realistic but also suitable for ultra-low-power event-driven neuromorphic implementation.
This paper investigates the contribution of spike timing dynamics to information encoding, synaptic plasticity and decision making, providing a new perspective to design of future DeepSNNs and neuromorphic hardware systems.
arXiv Detail & Related papers (2020-03-26T11:13:07Z) - EEG-based Brain-Computer Interfaces (BCIs): A Survey of Recent Studies
on Signal Sensing Technologies and Computational Intelligence Approaches and
their Applications [65.32004302942218]
Brain-Computer Interface (BCI) is a powerful communication tool between users and systems.
Recent technological advances have increased interest in electroencephalographic (EEG) based BCI for translational and healthcare applications.
arXiv Detail & Related papers (2020-01-28T10:36:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.