Extracting N-ary Cross-sentence Relations using Constrained Subsequence
Kernel
- URL: http://arxiv.org/abs/2006.08185v1
- Date: Mon, 15 Jun 2020 07:23:58 GMT
- Title: Extracting N-ary Cross-sentence Relations using Constrained Subsequence
Kernel
- Authors: Sachin Pawar, Pushpak Bhattacharyya, Girish K. Palshikar
- Abstract summary: We propose a new formulation of the relation extraction task where the relations are more general than intra-sentence relations.
We propose a novel sequence representation to characterize instances of such relations.
We evaluate our approach on three datasets across two domains: biomedical and general domain.
- Score: 36.86738081453646
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Most of the past work in relation extraction deals with relations occurring
within a sentence and having only two entity arguments. We propose a new
formulation of the relation extraction task where the relations are more
general than intra-sentence relations in the sense that they may span multiple
sentences and may have more than two arguments. Moreover, the relations are
more specific than corpus-level relations in the sense that their scope is
limited only within a document and not valid globally throughout the corpus. We
propose a novel sequence representation to characterize instances of such
relations. We then explore various classifiers whose features are derived from
this sequence representation. For SVM classifier, we design a Constrained
Subsequence Kernel which is a variant of Generalized Subsequence Kernel. We
evaluate our approach on three datasets across two domains: biomedical and
general domain.
Related papers
- TIMELINE: Exhaustive Annotation of Temporal Relations Supporting the
Automatic Ordering of Events in News Articles [4.314956204483074]
This paper presents a new annotation scheme that clearly defines the criteria based on which temporal relations should be annotated.
We also propose a method for annotating all temporal relations -- including long-distance ones -- which automates the process.
The result is a new dataset, the TIMELINE corpus, in which improved inter-annotator agreement was obtained.
arXiv Detail & Related papers (2023-10-26T22:23:38Z) - More than Classification: A Unified Framework for Event Temporal
Relation Extraction [61.44799147458621]
Event temporal relation extraction(ETRE) is usually formulated as a multi-label classification task.
We observe that all relations can be interpreted using the start and end time points of events.
We propose a unified event temporal relation extraction framework, which transforms temporal relations into logical expressions of time points.
arXiv Detail & Related papers (2023-05-28T02:09:08Z) - Relational Sentence Embedding for Flexible Semantic Matching [86.21393054423355]
We present Sentence Embedding (RSE), a new paradigm to discover further the potential of sentence embeddings.
RSE is effective and flexible in modeling sentence relations and outperforms a series of state-of-the-art embedding methods.
arXiv Detail & Related papers (2022-12-17T05:25:17Z) - Query-based Instance Discrimination Network for Relational Triple
Extraction [39.35417927570248]
Joint entity and relation extraction has been a core task in the field of information extraction.
Recent approaches usually consider the extraction of relational triples from a stereoscopic perspective.
We propose a novel query-based approach to construct instance-level representations for relational triples.
arXiv Detail & Related papers (2022-11-03T13:34:56Z) - RelationPrompt: Leveraging Prompts to Generate Synthetic Data for
Zero-Shot Relation Triplet Extraction [65.4337085607711]
We introduce the task setting of Zero-Shot Relation Triplet Extraction (ZeroRTE)
Given an input sentence, each extracted triplet consists of the head entity, relation label, and tail entity where the relation label is not seen at the training stage.
We propose to synthesize relation examples by prompting language models to generate structured texts.
arXiv Detail & Related papers (2022-03-17T05:55:14Z) - Hierarchical Relation-Guided Type-Sentence Alignment for Long-Tail
Relation Extraction with Distant Supervision [33.641404898790405]
We propose a novel model to enrich distantly-supervised sentences with entity types.
It consists of (1) a pairwise type-enriched sentence encoding module injecting both context-free and -related backgrounds to alleviate sentence-level wrong labeling, and (2) a hierarchical type-sentence alignment module enriching a sentence with the triple fact's basic attributes to support long-tail relations.
arXiv Detail & Related papers (2021-09-19T00:46:57Z) - Distantly Supervised Relation Extraction via Recursive
Hierarchy-Interactive Attention and Entity-Order Perception [3.8651116146455533]
In a sentence, the appearance order of two entities contributes to the understanding of its semantics.
We introduce a newfangled training objective, called Entity-Order Perception (EOP), to make the sentence encoder retain more entity appearance information.
Our approach achieves state-of-the-art performance in terms of precision-recall (P-R) curves, AUC, Top-N precision and other evaluation metrics.
arXiv Detail & Related papers (2021-05-18T00:45:25Z) - R$^2$-Net: Relation of Relation Learning Network for Sentence Semantic
Matching [58.72111690643359]
We propose a Relation of Relation Learning Network (R2-Net) for sentence semantic matching.
We first employ BERT to encode the input sentences from a global perspective.
Then a CNN-based encoder is designed to capture keywords and phrase information from a local perspective.
To fully leverage labels for better relation information extraction, we introduce a self-supervised relation of relation classification task.
arXiv Detail & Related papers (2020-12-16T13:11:30Z) - Learning Informative Representations of Biomedical Relations with Latent
Variable Models [2.4366811507669115]
We propose a latent variable model with an arbitrarily flexible distribution to represent the relation between an entity pair.
We demonstrate that our model achieves results competitive with strong baselines for both tasks while having fewer parameters and being significantly faster to train.
arXiv Detail & Related papers (2020-11-20T08:56:31Z) - Hierarchical Human Parsing with Typed Part-Relation Reasoning [179.64978033077222]
How to model human structures is the central theme in this task.
We seek to simultaneously exploit the representational capacity of deep graph networks and the hierarchical human structures.
arXiv Detail & Related papers (2020-03-10T16:45:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.