Query-based Instance Discrimination Network for Relational Triple
Extraction
- URL: http://arxiv.org/abs/2211.01797v1
- Date: Thu, 3 Nov 2022 13:34:56 GMT
- Title: Query-based Instance Discrimination Network for Relational Triple
Extraction
- Authors: Zeqi Tan, Yongliang Shen, Xuming Hu, Wenqi Zhang, Xiaoxia Cheng,
Weiming Lu and Yueting Zhuang
- Abstract summary: Joint entity and relation extraction has been a core task in the field of information extraction.
Recent approaches usually consider the extraction of relational triples from a stereoscopic perspective.
We propose a novel query-based approach to construct instance-level representations for relational triples.
- Score: 39.35417927570248
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Joint entity and relation extraction has been a core task in the field of
information extraction. Recent approaches usually consider the extraction of
relational triples from a stereoscopic perspective, either learning a
relation-specific tagger or separate classifiers for each relation type.
However, they still suffer from error propagation, relation redundancy and lack
of high-level connections between triples. To address these issues, we propose
a novel query-based approach to construct instance-level representations for
relational triples. By metric-based comparison between query embeddings and
token embeddings, we can extract all types of triples in one step, thus
eliminating the error propagation problem. In addition, we learn the
instance-level representation of relational triples via contrastive learning.
In this way, relational triples can not only enclose rich class-level semantics
but also access to high-order global connections. Experimental results show
that our proposed method achieves the state of the art on five widely used
benchmarks.
Related papers
- RTF: Region-based Table Filling Method for Relational Triple Extraction [17.267920424291372]
We propose a novel Region-based Table Filling method (RT) for extracting triples from knowledge graphs.
We devise a novel regionbased tagging scheme and bi-directional decoding strategy, which regard each triple as a region on the relation-specific table, and identifies triples by determining two endpoints of each region.
Experimental results show our method achieves better generalization capability on three variants of two widely used benchmark datasets.
arXiv Detail & Related papers (2024-04-29T23:36:38Z) - Mutually Guided Few-shot Learning for Relational Triple Extraction [10.539566491939844]
Mutually Guided Few-shot learning framework for Triple Extraction (MG-FTE)
Our method consists of an entity-guided relation-decoder to classify relations and a proto-decoder to extract entities.
Our method outperforms many state-of-the-art methods by 12.6 F1 score on FewRel 1.0 (single domain) and 20.5 F1 score on FewRel 2.0 (cross-domain)
arXiv Detail & Related papers (2023-06-23T06:15:54Z) - Learnable Pillar-based Re-ranking for Image-Text Retrieval [119.9979224297237]
Image-text retrieval aims to bridge the modality gap and retrieve cross-modal content based on semantic similarities.
Re-ranking, a popular post-processing practice, has revealed the superiority of capturing neighbor relations in single-modality retrieval tasks.
We propose a novel learnable pillar-based re-ranking paradigm for image-text retrieval.
arXiv Detail & Related papers (2023-04-25T04:33:27Z) - A Dataset for Hyper-Relational Extraction and a Cube-Filling Approach [59.89749342550104]
We propose the task of hyper-relational extraction to extract more specific and complete facts from text.
Existing models cannot perform hyper-relational extraction as it requires a model to consider the interaction between three entities.
We propose CubeRE, a cube-filling model inspired by table-filling approaches and explicitly considers the interaction between relation triplets and qualifiers.
arXiv Detail & Related papers (2022-11-18T03:51:28Z) - RelationPrompt: Leveraging Prompts to Generate Synthetic Data for
Zero-Shot Relation Triplet Extraction [65.4337085607711]
We introduce the task setting of Zero-Shot Relation Triplet Extraction (ZeroRTE)
Given an input sentence, each extracted triplet consists of the head entity, relation label, and tail entity where the relation label is not seen at the training stage.
We propose to synthesize relation examples by prompting language models to generate structured texts.
arXiv Detail & Related papers (2022-03-17T05:55:14Z) - OneRel:Joint Entity and Relation Extraction with One Module in One Step [42.576188878294886]
Joint entity and relation extraction is an essential task in natural language processing and knowledge graph construction.
We propose a novel joint entity and relation extraction model, named OneRel, which casts joint extraction as a fine-grained triple classification problem.
arXiv Detail & Related papers (2022-03-10T15:09:59Z) - Bridging Text and Knowledge with Multi-Prototype Embedding for Few-Shot
Relational Triple Extraction [40.00702385889112]
We propose a novel multi-prototype embedding network model to jointly extract the composition of relational triples.
We design a hybrid learning mechanism that bridges text and knowledge concerning both entities and relations.
Experimental results demonstrate that the proposed method can improve the performance of the few-shot triple extraction.
arXiv Detail & Related papers (2020-10-30T04:18:39Z) - Learning to Decouple Relations: Few-Shot Relation Classification with
Entity-Guided Attention and Confusion-Aware Training [49.9995628166064]
We propose CTEG, a model equipped with two mechanisms to learn to decouple easily-confused relations.
On the one hand, an EGA mechanism is introduced to guide the attention to filter out information causing confusion.
On the other hand, a Confusion-Aware Training (CAT) method is proposed to explicitly learn to distinguish relations.
arXiv Detail & Related papers (2020-10-21T11:07:53Z) - TDRE: A Tensor Decomposition Based Approach for Relation Extraction [6.726803950083593]
Extracting entity pairs along with relation types from unstructured texts is a fundamental subtask of information extraction.
In this paper, we first model the final triplet extraction result as a three-order tensor of word-to-word pairs enriched with each relation type.
The proposed method outperforms existing strong baselines.
arXiv Detail & Related papers (2020-10-15T05:29:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.