論文の概要: Detecting unusual input to neural networks
- arxiv url: http://arxiv.org/abs/2006.08278v1
- Date: Mon, 15 Jun 2020 10:48:43 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-21 03:07:33.414726
- Title: Detecting unusual input to neural networks
- Title(参考訳): ニューラルネットワークへの異常入力の検出
- Authors: J\"org Martin, Clemens Elster
- Abstract要約: 本研究では,学習パラメータと比較して情報内容を評価することによって,入力の特異性を判定する手法を提案する。
この手法は、ある入力を処理するのにネットワークが適しているかどうかを判断し、予期せぬ振る舞いが先延ばしになるような赤い旗を掲げるために使用することができる。
- 参考スコア(独自算出の注目度): 0.48733623015338234
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Evaluating a neural network on an input that differs markedly from the
training data might cause erratic and flawed predictions. We study a method
that judges the unusualness of an input by evaluating its informative content
compared to the learned parameters. This technique can be used to judge whether
a network is suitable for processing a certain input and to raise a red flag
that unexpected behavior might lie ahead. We compare our approach to various
methods for uncertainty evaluation from the literature for various datasets and
scenarios. Specifically, we introduce a simple, effective method that allows to
directly compare the output of such metrics for single input points even if
these metrics live on different scales.
- Abstract(参考訳): トレーニングデータと大きく異なる入力に対するニューラルネットワークの評価は、不規則で欠陥のある予測を引き起こす可能性がある。
本研究では,学習パラメータと比較して情報内容を評価することによって,入力の特異性を判定する手法を提案する。
このテクニックは、ネットワークが特定の入力を処理するのに適しているかどうかを判断し、予期しない振る舞いが先にあるかもしれない赤旗を上げるのに使用できる。
各種データセットやシナリオの文献からの不確実性評価を行う手法との比較を行った。
具体的には、これらの指標が異なるスケールで生きている場合でも、単一の入力ポイントに対してこれらの指標の出力を直接比較できる、単純で効果的な方法を提案する。
関連論文リスト
- Pretraining Data Detection for Large Language Models: A Divergence-based Calibration Method [108.56493934296687]
本研究では,乱数から発散する概念に触発された偏差に基づくキャリブレーション手法を導入し,プリトレーニングデータ検出のためのトークン確率のキャリブレーションを行う。
我々は,中国語テキスト上でのLLMの検出手法の性能を評価するために,中国語のベンチマークであるPatentMIAを開発した。
論文 参考訳(メタデータ) (2024-09-23T07:55:35Z) - A Rate-Distortion View of Uncertainty Quantification [36.85921945174863]
教師付き学習では、入力がトレーニングデータに近接していることを理解することは、モデルが信頼できる予測に達する十分な証拠を持っているかどうかを判断するのに役立つ。
本稿では,この特性でディープニューラルネットワークを強化するための新しい手法であるDistance Aware Bottleneck (DAB)を紹介する。
論文 参考訳(メタデータ) (2024-06-16T01:33:22Z) - QGait: Toward Accurate Quantization for Gait Recognition with Binarized Input [17.017127559393398]
バックプロパゲーション時の円関数の勾配をよりよくシミュレートする,微分可能なソフト量子化器を提案する。
これにより、ネットワークは微妙な入力摂動から学習することができる。
量子化エラーをシミュレートしながら収束を確保するためのトレーニング戦略をさらに洗練する。
論文 参考訳(メタデータ) (2024-05-22T17:34:18Z) - Deep Neural Networks Tend To Extrapolate Predictably [51.303814412294514]
ニューラルネットワークの予測は、アウト・オブ・ディストリビューション(OOD)入力に直面した場合、予測不可能で過信される傾向がある。
我々は、入力データがOODになるにつれて、ニューラルネットワークの予測が一定値に向かう傾向があることを観察する。
我々は、OOD入力の存在下でリスクに敏感な意思決定を可能にするために、私たちの洞察を実際に活用する方法を示します。
論文 参考訳(メタデータ) (2023-10-02T03:25:32Z) - How adversarial attacks can disrupt seemingly stable accurate classifiers [76.95145661711514]
敵攻撃は、入力データに不連続な修正を加えることで、非正確な学習システムの出力を劇的に変化させる。
ここでは,これは高次元入力データを扱う分類器の基本的特徴であると考えられる。
実用システムで観測される重要な振る舞いを高い確率で発生させる、単純で汎用的なフレームワークを導入する。
論文 参考訳(メタデータ) (2023-09-07T12:02:00Z) - Probing the Purview of Neural Networks via Gradient Analysis [13.800680101300756]
我々は、ニューラルネットワークのデータ依存能力を分析し、推論中のネットワークの観点から入力の異常を評価する。
ネットワークのパービューを探索するために、モデルに必要な変化量を測定するために勾配を利用して、与えられた入力をより正確に特徴付ける。
我々の勾配に基づくアプローチは、学習した特徴で正確に表現できない入力を効果的に区別できることを実証する。
論文 参考訳(メタデータ) (2023-04-06T03:02:05Z) - Automatic Change-Point Detection in Time Series via Deep Learning [8.43086628139493]
ニューラルネットワークのトレーニングに基づいて,新しいオフライン検出手法を自動生成する方法を示す。
本稿では,そのような手法の誤差率を定量化する理論について述べる。
また,加速度計データに基づく活動変化の検出と位置推定にも強い効果が得られた。
論文 参考訳(メタデータ) (2022-11-07T20:59:14Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
本研究では,Nadaraya-Watson の条件付きラベル分布の非パラメトリック推定に基づく分類器の予測の不確かさの測定方法を示す。
種々の実世界の画像データセットにおける不確実性推定タスクにおいて,本手法の強い性能を示す。
論文 参考訳(メタデータ) (2022-02-07T12:30:45Z) - Human-in-the-Loop Disinformation Detection: Stance, Sentiment, or
Something Else? [93.91375268580806]
政治とパンデミックは、機械学習対応の偽ニュース検出アルゴリズムの開発に十分な動機を与えている。
既存の文献は、主に完全自動化されたケースに焦点を当てているが、その結果得られた技術は、軍事応用に必要な様々なトピック、ソース、時間スケールに関する偽情報を確実に検出することはできない。
既に利用可能なアナリストを人間のループとして活用することにより、感情分析、アスペクトベースの感情分析、姿勢検出といった標準的な機械学習技術は、部分的に自動化された偽情報検出システムに使用するためのもっとも有効な方法となる。
論文 参考訳(メタデータ) (2021-11-09T13:30:34Z) - Fine-Grained Neural Network Explanation by Identifying Input Features
with Predictive Information [53.28701922632817]
入力領域における予測情報を用いて特徴を識別する手法を提案する。
我々の手法の中核となる考え方は、予測潜在機能に関連する入力機能のみを通過させる入力のボトルネックを活用することである。
論文 参考訳(メタデータ) (2021-10-04T14:13:42Z) - Uncertainty Estimation for End-To-End Learned Dense Stereo Matching via
Probabilistic Deep Learning [0.0]
重極補正ステレオ画像対からの結合深さと不確実性推定のタスクに対して,新しい確率的ニューラルネットワークを提案する。
ネットワークは、予測毎にパラメータがサンプリングされる確率分布を学習する。
推定深度と不確実性情報の質を3つの異なるデータセットで広範囲に評価する。
論文 参考訳(メタデータ) (2020-02-10T11:27:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。