論文の概要: NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks
- arxiv url: http://arxiv.org/abs/2202.03101v1
- Date: Mon, 7 Feb 2022 12:30:45 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-08 14:34:24.779791
- Title: NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks
- Title(参考訳): nuq: 決定論的ニューラルネットワークに対する非パラメトリック不確実性定量化
- Authors: Nikita Kotelevskii, Aleksandr Artemenkov, Kirill Fedyanin, Fedor
Noskov, Alexander Fishkov, Aleksandr Petiushko and Maxim Panov
- Abstract要約: 本研究では,Nadaraya-Watson の条件付きラベル分布の非パラメトリック推定に基づく分類器の予測の不確かさの測定方法を示す。
種々の実世界の画像データセットにおける不確実性推定タスクにおいて,本手法の強い性能を示す。
- 参考スコア(独自算出の注目度): 151.03112356092575
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper proposes a fast and scalable method for uncertainty quantification
of machine learning models' predictions. First, we show the principled way to
measure the uncertainty of predictions for a classifier based on
Nadaraya-Watson's nonparametric estimate of the conditional label distribution.
Importantly, the approach allows to disentangle explicitly aleatoric and
epistemic uncertainties. The resulting method works directly in the feature
space. However, one can apply it to any neural network by considering an
embedding of the data induced by the network. We demonstrate the strong
performance of the method in uncertainty estimation tasks on a variety of
real-world image datasets, such as MNIST, SVHN, CIFAR-100 and several versions
of ImageNet.
- Abstract(参考訳): 本稿では,機械学習モデルの予測の不確実性定量化のための高速でスケーラブルな手法を提案する。
まず,nadaraya-watsonの条件付きラベル分布の非パラメトリック推定に基づく分類器の予測の不確かさを原理的に測定する方法を示す。
重要なことに、このアプローチははっきりとアリーテータと認識的不確実性を区別することができる。
結果のメソッドは機能空間で直接動作する。
しかし、ネットワークによって引き起こされるデータの埋め込みを考慮すれば、任意のニューラルネットワークに適用することができる。
我々は,MNIST,SVHN,CIFAR-100,ImageNetなど,様々な実世界の画像データセットに対する不確実性推定タスクにおいて,この手法の強い性能を示す。
関連論文リスト
- Tractable Function-Space Variational Inference in Bayesian Neural
Networks [72.97620734290139]
ニューラルネットワークの予測不確かさを推定するための一般的なアプローチは、ネットワークパラメータに対する事前分布を定義することである。
本稿では,事前情報を組み込むスケーラブルな関数空間変動推論手法を提案する。
提案手法は,様々な予測タスクにおいて,最先端の不確実性評価と予測性能をもたらすことを示す。
論文 参考訳(メタデータ) (2023-12-28T18:33:26Z) - Quantification of Predictive Uncertainty via Inference-Time Sampling [57.749601811982096]
本稿では,データあいまいさの予測不確実性を推定するためのポストホックサンプリング手法を提案する。
この方法は与えられた入力に対して異なる可算出力を生成することができ、予測分布のパラメトリック形式を仮定しない。
論文 参考訳(メタデータ) (2023-08-03T12:43:21Z) - Integrating Uncertainty into Neural Network-based Speech Enhancement [27.868722093985006]
時間周波数領域における監視されたマスキングアプローチは、ディープニューラルネットワークを使用して乗法マスクを推定し、クリーンな音声を抽出することを目的としている。
これにより、信頼性の保証や尺度を使わずに、各入力に対する単一の見積もりが導かれる。
クリーン音声推定における不確実性モデリングの利点について検討する。
論文 参考訳(メタデータ) (2023-05-15T15:55:12Z) - Confidence estimation of classification based on the distribution of the
neural network output layer [4.529188601556233]
現実の世界における予測モデルの適用を防ぐための最も一般的な問題の1つは一般化の欠如である。
ニューラルネットワーク分類モデルにより生成された特定の予測の不確かさを推定する新しい手法を提案する。
提案手法は,この予測に対応するロジット値の分布に基づいて,特定の予測の信頼性を推定する。
論文 参考訳(メタデータ) (2022-10-14T12:32:50Z) - Dense Uncertainty Estimation [62.23555922631451]
本稿では,ニューラルネットワークと不確実性推定手法について検討し,正確な決定論的予測と確実性推定の両方を実現する。
本研究では,アンサンブルに基づく手法と生成モデルに基づく手法の2つの不確実性推定法について検討し,それらの長所と短所を,完全/半端/弱度に制御されたフレームワークを用いて説明する。
論文 参考訳(メタデータ) (2021-10-13T01:23:48Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
ニューラルネットワークは、普遍関数近似器として機能することで、複雑なデータ分布から学習することに成功した。
彼らはしばしば予測に自信過剰であり、不正確で誤った確率的予測に繋がる。
本稿では,モデルが不当に過信である特徴空間の領域を探索し,それらの予測のエントロピーをラベルの以前の分布に対して条件的に高める手法を提案する。
論文 参考訳(メタデータ) (2021-02-22T07:02:37Z) - Revisiting One-vs-All Classifiers for Predictive Uncertainty and
Out-of-Distribution Detection in Neural Networks [22.34227625637843]
識別型分類器における確率のパラメトリゼーションが不確実性推定に与える影響について検討する。
画像分類タスクのキャリブレーションを改善するために, 1-vs-all の定式化が可能であることを示す。
論文 参考訳(メタデータ) (2020-07-10T01:55:02Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z) - Uncertainty Estimation for End-To-End Learned Dense Stereo Matching via
Probabilistic Deep Learning [0.0]
重極補正ステレオ画像対からの結合深さと不確実性推定のタスクに対して,新しい確率的ニューラルネットワークを提案する。
ネットワークは、予測毎にパラメータがサンプリングされる確率分布を学習する。
推定深度と不確実性情報の質を3つの異なるデータセットで広範囲に評価する。
論文 参考訳(メタデータ) (2020-02-10T11:27:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。